Laridium_v49/Core/Src/main.cpp
2024-10-09 23:15:27 +05:30

1416 lines
37 KiB
C++

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2023 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "app_touchgfx.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <math.h>
#include "st7789v.h"
#include "xpt2046.h"
#include "FLASH_SECTOR_F4.h"
#include <stdlib.h>
#include "stm32f4xx_hal_adc_ex.h"
#include "touchgfx/Screen.hpp"
#include <gui/home_screen/HomeView.hpp>
//#include <gui/home_screen/HomeView.hpp>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
CRC_HandleTypeDef hcrc;
SPI_HandleTypeDef hspi1;
SPI_HandleTypeDef hspi2;
DMA_HandleTypeDef hdma_spi1_tx;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim4;
/* USER CODE BEGIN PV */
__IO uint8_t User_ButtonState = 0;
__IO uint8_t ButnState = 0;
SCREEN_Buf disp_buf;
// flash
static uint32_t flash_buf[128];
bool flash_flag = false;
bool get_data_from_flash = false;
static const double temp_ref[] = {334.274, 241.323, 176.133, 129.9, 96.761, 72.765, 55.218, 42.268, 32.624, 25.381,
19.897, 15.711, 12.493, 10, 8.056, 6.530, 5.324, 4.365, 3.599, 2.982,
2.484, 2.079, 1.748, 1.476, 1.252, 1.066, 0.9116, 0.7825, 0.6741, 0.5828,
0.5057, 0.4402, 0.3844, 0.3367};
//Sleep counter
uint32_t SleepTickCnt = 0;//SLEEP_TIME;
bool Sleep_status = false;
// motor
static MOTOR_Hash_Map motor_mode[MODE_MAX];
uint8_t motor_timeCnt = 0;
uint8_t run_flag = false;
static uint8_t node_num = 0;
bool long_press = false;
// buzzer
uint8_t sound_flag = 0;
uint16_t vol_timeline;
uint16_t vol_timeCnt = 0;
//uint32_t time_to_upd_flash = 0;
extern bool finish;
bool rebuildHome = false;
bool rebuildSettings = false;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_CRC_Init(void);
static void MX_SPI1_Init(void);
static void MX_SPI2_Init(void);
static void MX_TIM2_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM1_Init(void);
static void MX_TIM3_Init(void);
static void MX_TIM4_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
//Encoder
uint16_t iCounter, preCounter = 0;
uint8_t encoder_Event = 0;
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim){ //Encoder
if (htim->Instance != TIM3){
return;
}
int val;
iCounter = __HAL_TIM_GET_COUNTER(htim);
//SleepTickCnt = 0;
if(Sleep_status){
Sleep_status = false;
}
else{
if(preCounter != iCounter){
val = preCounter - iCounter;
if(val < 0){
val = 255;
if (encoder_Event){
ButnState = 0x02;
Sound_Set_Func(disp_buf.buz_status, disp_buf.buzzer_volume, VOLTIMELINE);
encoder_Event = 0;
}
else encoder_Event = 1;
}
else{
val = 1;
if (encoder_Event == 2){
ButnState = 0x03;
Sound_Set_Func(disp_buf.buz_status, disp_buf.buzzer_volume, VOLTIMELINE);
encoder_Event = 0;
}
else encoder_Event = 2;
}
preCounter = iCounter;
}
}
}
//BTN
btn_status_t BTN_flag = BTN_RELASED;
uint8_t btnCnt_en = 0;
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin){
switch(GPIO_Pin){
case BTN_Pin:
//SleepTickCnt = 0;
if(Sleep_status){
Sleep_status = false;
}
else btnCnt_en = 1;
break;
default:
break;
}
}
static void WDT_Init (uint16_t tw){
IWDG->KR=0x5555;
IWDG->PR=7;
IWDG->RLR=tw*40/256;
IWDG->KR=0xAAAA;
IWDG->KR=0xCCCC;
}
static void WDT_Rst (void){
IWDG->KR=0xAAAA;
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
SysTick_Config(SystemCoreClock / 1000);
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_CRC_Init();
MX_SPI1_Init();
MX_SPI2_Init();
MX_TIM2_Init();
MX_ADC1_Init();
MX_TIM1_Init();
MX_TIM3_Init();
MX_TIM4_Init();
MX_TouchGFX_Init();
/* USER CODE BEGIN 2 */
HAL_ADC_Start(&hadc1);
//HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);
Init_DISP_Para();
Init_Pattern();
TFT_Set_Func(disp_buf.screen_brightness);
LED_Set_Func(disp_buf.led_status, disp_buf.light_brightness);
Sound_Set_Func(disp_buf.buz_status, disp_buf.buzzer_volume, VOLTIMELINE);
if (disp_buf.rpm > 10){
disp_buf.rpm = 5;
}
disp_buf.buzzer_volume = 1;
//disp_buf.buz_status = true;
#if 1 // 0 for motor test, 1 for normal work
Motor_Set_Func(PAUSE, 0);
#else
while (1){
for (uint8_t i = 0; i < 100; i++){
Motor_Set_Func(CLOCKWISE, i);
HAL_Delay(50);
}
for (uint8_t i = 100; i > 0; i--){
Motor_Set_Func(CLOCKWISE, i);
HAL_Delay(50);
}
Motor_Set_Func(PAUSE, 0);
HAL_Delay(2000);
for (uint8_t i = 0; i < 100; i++){
Motor_Set_Func(COUNTERCLOCKWISE, i);
HAL_Delay(50);
}
for (uint8_t i = 100; i > 0; i--){
Motor_Set_Func(COUNTERCLOCKWISE, i);
HAL_Delay(50);
}
Motor_Set_Func(PAUSE, 0);
HAL_Delay(2000);
}
#endif
Sleep_status = false;
ILI9341_Init();
XPT2046_Init();
HAL_TIM_Base_Start_IT(&htim2);
HAL_TIM_Encoder_Start_IT(&htim3, TIM_CHANNEL_ALL);
//User_ButtonState = 0x01;
#if 0 // direct LCD backlight on
static GPIO_InitTypeDef GPIO_InitStruct = {0};
HAL_GPIO_DeInit(GPIOE, GPIO_PIN_9);
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_9, GPIO_PIN_SET);
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
#endif
//TFT_Set_Func(100);
//while(1){}
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
//finish = true;
BTN_flag = BTN_PRESS;
WDT_Init(10000);
while (1)
{
WDT_Rst();
if(ButnState != 0){
if (SleepTickCnt != 0){
SleepTickCnt = SLEEP_TIME;
User_ButtonState = ButnState;
}
ButnState = 0;
}
if (finish == false){
if(BTN_flag == BTN_PRESS){
BTN_flag = BTN_RELASED;
if (SleepTickCnt != 0){
User_ButtonState = 0x01;
} else {
rebuildHome = true;
rebuildSettings = true;
}
SleepTickCnt = SLEEP_TIME;
long_press = false;
if(disp_buf.motor_status == MOTOR_RUN){
//ILI9341_Init();
rebuildHome = true;
}
}
}
if (SleepTickCnt != 0){
if (finish == true){
//ILI9341_Init();
rebuildHome = true;
User_ButtonState = 0x01;
//BTN_flag = BTN_RELASED;
}
MX_TouchGFX_Process();
} else {
if (finish == true){
//ILI9341_Init();
rebuildHome = true;
User_ButtonState = 0x01;
//BTN_flag = BTN_RELASED;
MX_TouchGFX_Process();
} else {
TFT_full(0);
}
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
#if 0
if (disp_buf.motor_status != MOTOR_RUN) {
long_press = false;
}
if(BTN_flag == BTN_LONG_PRESS){
BTN_flag = BTN_RELASED;
User_ButtonState = 0x04;
long_press = true;
Sound_Set_Func(disp_buf.buz_status, disp_buf.buzzer_volume, VOLTIMELINE);
}
#endif
Temp_Correction_Func();
if(sound_flag == 2){
sound_flag = 0;
Sound_Set_Func(disp_buf.buz_status, 0, 0);
}
#if 0
if(disp_buf.motor_status){
if(!run_flag){
motor_timeCnt = 0; run_flag = 1;
}
else{
RunMotorCycle(disp_buf.pattern, disp_buf.rpm);
}
}
//#else
if(disp_buf.motor_status == MOTOR_RUN){
if(!run_flag){
motor_timeCnt = 0;
run_flag = 1;
}
else{
RunMotorCycle(disp_buf.pattern, disp_buf.rpm);
}
} else if (disp_buf.motor_status == MOTOR_PAUSE) {
run_flag = false;
Motor_Set_Func(PAUSE, 0);
} else {
Motor_Set_Func(PAUSE, 0);
motor_timeCnt = 0;
run_flag = false;
//Init_DISP_Para();
}
#endif
SleepMode_Func(disp_buf.screen_timeout, disp_buf.screen_brightness);
if((flash_flag == true) && (disp_buf.motor_status != MOTOR_RUN)){
flash_flag = false;
FLASH_Update();
}
if (get_data_from_flash == true){
get_data_from_flash = false;
Init_DISP_Para();
}
if(disp_buf.disp_runtime_min == 0){
static uint16_t sound_ran_time = 0xffff;
if ((disp_buf.disp_runtime_sec == 3) || (disp_buf.disp_runtime_sec == 2) || (disp_buf.disp_runtime_sec == 1)){
if (sound_ran_time != disp_buf.disp_runtime_sec){
Sound_Set_Func(disp_buf.buz_status, disp_buf.buzzer_volume, 250);
sound_ran_time = disp_buf.disp_runtime_sec;
}
}
}
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 100;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_11;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_144CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief CRC Initialization Function
* @param None
* @retval None
*/
static void MX_CRC_Init(void)
{
/* USER CODE BEGIN CRC_Init 0 */
/* USER CODE END CRC_Init 0 */
/* USER CODE BEGIN CRC_Init 1 */
/* USER CODE END CRC_Init 1 */
hcrc.Instance = CRC;
if (HAL_CRC_Init(&hcrc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN CRC_Init 2 */
/* USER CODE END CRC_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief SPI2 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI2_Init(void)
{
/* USER CODE BEGIN SPI2_Init 0 */
/* USER CODE END SPI2_Init 0 */
/* USER CODE BEGIN SPI2_Init 1 */
/* USER CODE END SPI2_Init 1 */
/* SPI2 parameter configuration*/
hspi2.Instance = SPI2;
hspi2.Init.Mode = SPI_MODE_MASTER;
hspi2.Init.Direction = SPI_DIRECTION_2LINES;
hspi2.Init.DataSize = SPI_DATASIZE_8BIT;
hspi2.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi2.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi2.Init.NSS = SPI_NSS_SOFT;
hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi2.Init.TIMode = SPI_TIMODE_DISABLE;
hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi2.Init.CRCPolynomial = 10;
if (HAL_SPI_Init(&hspi2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI2_Init 2 */
/* USER CODE END SPI2_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 250-1;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 100-1;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
HAL_TIM_MspPostInit(&htim1);
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 25000-1;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 100-1;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief TIM3 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM3_Init(void)
{
/* USER CODE BEGIN TIM3_Init 0 */
/* USER CODE END TIM3_Init 0 */
TIM_Encoder_InitTypeDef sConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM3_Init 1 */
/* USER CODE END TIM3_Init 1 */
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
sConfig.EncoderMode = TIM_ENCODERMODE_TI12;
sConfig.IC1Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC1Prescaler = TIM_ICPSC_DIV1;
sConfig.IC1Filter = 15;
sConfig.IC2Polarity = TIM_ICPOLARITY_RISING;
sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI;
sConfig.IC2Prescaler = TIM_ICPSC_DIV1;
sConfig.IC2Filter = 15;
if (HAL_TIM_Encoder_Init(&htim3, &sConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM3_Init 2 */
/* USER CODE END TIM3_Init 2 */
}
/**
* @brief TIM4 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 125-1;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 100-1;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
HAL_TIM_Base_MspInit(&htim4);
/* USER CODE END TIM4_Init 2 */
HAL_TIM_MspPostInit(&htim4);
return;
/* USER CODE END TIM4_Init 0 */
//TIM_ClockConfigTypeDef sClockSourceConfig = {0};
//TIM_MasterConfigTypeDef sMasterConfig = {0};
//TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 125-1;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 100-1;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
HAL_TIM_MspPostInit(&htim4);
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA2_Stream3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, DC_Pin|RESET_Pin|SPI1_NSS_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(T_CS_GPIO_Port, T_CS_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : DC_Pin RESET_Pin SPI1_NSS_Pin */
GPIO_InitStruct.Pin = DC_Pin|RESET_Pin|SPI1_NSS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : T_CS_Pin */
GPIO_InitStruct.Pin = T_CS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(T_CS_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : T_IRQ_Pin */
GPIO_InitStruct.Pin = T_IRQ_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(T_IRQ_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : BTN_Pin */
GPIO_InitStruct.Pin = BTN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(BTN_GPIO_Port, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI0_IRQn);
HAL_NVIC_SetPriority(EXTI9_5_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI9_5_IRQn);
}
/* USER CODE BEGIN 4 */
void FLASH_Update(void){
flash_buf[FLASH_STATUS] = 1;
flash_buf[LED_STATUS] = disp_buf.led_status;
flash_buf[BUZ_STATUS] = disp_buf.buz_status;
flash_buf[RUN_MIN] = disp_buf.runtime_min;
flash_buf[RUN_SEC] = disp_buf.runtime_sec;
flash_buf[TEMP_UNIT] = disp_buf.uint_type;
flash_buf[RPM_VAL] = disp_buf.rpm;
flash_buf[MODE_NUM] = disp_buf.pattern;
flash_buf[LIGHT_BRIGHT] = disp_buf.light_brightness;
flash_buf[SCREEN_BRIGHT] = disp_buf.screen_brightness;
flash_buf[SLEEP_STATUS] = disp_buf.screen_timeout;
flash_buf[BUZ_VOLUME] = disp_buf.buzzer_volume;
Flash_Write_Data(0x080E0000, flash_buf, 12);
}
#ifdef __cplusplus
extern "C" {
#endif
extern void touchgfxSignalVSync(void);
#ifdef __cplusplus
}
#endif
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM2){
touchgfxSignalVSync();
}
}
// initialize the screen parameters
uint32_t flash_rx[128];
void Init_DISP_Para(void){
Flash_Read_Data(0x080E0000, flash_buf, 12);
if(flash_buf[FLASH_STATUS] == 1){
disp_buf.led_status = flash_buf[LED_STATUS];
disp_buf.buz_status = flash_buf[BUZ_STATUS];
disp_buf.runtime_min = flash_buf[RUN_MIN];
disp_buf.runtime_sec = flash_buf[RUN_SEC];
disp_buf.uint_type = flash_buf[TEMP_UNIT];
disp_buf.rpm = flash_buf[RPM_VAL];
disp_buf.pattern = flash_buf[MODE_NUM];
disp_buf.light_brightness = flash_buf[LIGHT_BRIGHT];
disp_buf.screen_brightness = flash_buf[SCREEN_BRIGHT];
disp_buf.screen_timeout = flash_buf[SLEEP_STATUS];
disp_buf.buzzer_volume = flash_buf[BUZ_VOLUME];
}
else{
disp_buf.led_status = ON;
disp_buf.buz_status = ON;
disp_buf.runtime_min = 15;
disp_buf.runtime_sec = 0;
disp_buf.uint_type = 'C';
disp_buf.rpm = RPM_MAX;
disp_buf.pattern = 0;
disp_buf.light_brightness = 5;//LED_BRIGHTNESS_MAX;
disp_buf.screen_brightness = DISP_BRIGHTNESS_MAX;
disp_buf.screen_timeout = OFF;
disp_buf.buzzer_volume = 1; //VOLUME_MAX;
}
disp_buf.disp_status = HOME;
disp_buf.motor_status = MOTOR_STOP;
disp_buf.disp_runtime_min = disp_buf.runtime_min;
disp_buf.disp_runtime_sec = disp_buf.runtime_sec;
disp_buf.temp_val = 0;
if (disp_buf.rpm == 0){
disp_buf.rpm = 1;
}
}
void Init_Pattern(){
// Default -----
motor_mode[0].node_len = 4; // Pattern length
motor_mode[0].node[0].timeline = 1;
motor_mode[0].node[0].dir = CLOCKWISE;
motor_mode[0].node[1].timeline = PAUSE_TIME_S;
motor_mode[0].node[1].dir = PAUSE;
motor_mode[0].node[2].timeline = 1;
motor_mode[0].node[2].dir = COUNTERCLOCKWISE;
motor_mode[0].node[3].timeline = PAUSE_TIME_S;
motor_mode[0].node[3].dir = PAUSE;
// Mode 1 -----
motor_mode[1].node_len = 4; // Pattern length
motor_mode[1].node[0].timeline = 3;
motor_mode[1].node[0].dir = CLOCKWISE;
motor_mode[1].node[1].timeline = PAUSE_TIME_S;
motor_mode[1].node[1].dir = PAUSE;
motor_mode[1].node[2].timeline = 3;
motor_mode[1].node[2].dir = COUNTERCLOCKWISE;
motor_mode[1].node[3].timeline = PAUSE_TIME_S;
motor_mode[1].node[3].dir = PAUSE;
// Mode 2 -----
motor_mode[2].node_len = 4; // Pattern length
motor_mode[2].node[0].timeline = 10;
motor_mode[2].node[0].dir = CLOCKWISE;
motor_mode[2].node[1].timeline = PAUSE_TIME_S;
motor_mode[2].node[1].dir = PAUSE;
motor_mode[2].node[2].timeline = 10;
motor_mode[2].node[2].dir = COUNTERCLOCKWISE;
motor_mode[2].node[3].timeline = PAUSE_TIME_S;
motor_mode[2].node[3].dir = PAUSE;
}
// setting the MOTOR
void Motor_Set_Func(uint8_t dir, uint16_t speed_val){
#if 0
float persent;
if(speed_val <= 0 ) persent = 0;
else{
if(speed_val > RPM_MAX) speed_val = RPM_MAX;
persent = speed_val * 100 / RPM_MAX;
}
#else
uint16_t persent = 60 + (4 * speed_val);
if (persent > 100) {
persent = 100;
}
#endif
static uint8_t increase = 0;
static uint16_t pwm_persent = 0;
increase++;
if (increase >= 5){
increase = 0;
if ((dir == CLOCKWISE) || (dir == COUNTERCLOCKWISE)){
//if (SleepTickCnt != 0){
if (pwm_persent < persent){
pwm_persent++;
} else {
pwm_persent = persent;
}
// } else {
// pwm_persent = persent;
// }
}
}
static bool pwm_start = false;
switch(dir){
case CLOCKWISE:
TIM4->CCR2 = 0;
TIM4->CCR1 = pwm_persent;//(persent);
if (pwm_start == false) {
HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_2);
pwm_start = true;
}
break;
case COUNTERCLOCKWISE:
TIM4->CCR1 = 0;
TIM4->CCR2 = pwm_persent;//(persent);
if (pwm_start == false) {
HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_2);
pwm_start = true;
}
break;
default:
TIM4->CCR1 = 0;
TIM4->CCR2 = 0;
pwm_persent = 0;
if (pwm_start != false) {
HAL_TIM_PWM_Stop(&htim4, TIM_CHANNEL_1);
HAL_TIM_PWM_Stop(&htim4, TIM_CHANNEL_2);
pwm_start = false;
}
break;
}
}
// Motor driver
void RunMotorCycle(uint8_t pattern, uint16_t speed){
if(node_num >= motor_mode[pattern].node_len){
run_flag = 0;
node_num = 0;
// disp_buf.motor_status = false;
Motor_Set_Func(PAUSE, 0);
return;
}
if(motor_timeCnt < motor_mode[pattern].node[node_num].timeline){
Motor_Set_Func(motor_mode[pattern].node[node_num].dir, speed);
} else {
motor_timeCnt = 0;
//run_flag = 0;
node_num+=1;
//Motor_Set_Func(PAUSE, 0);
}
}
// setting the brightness of TFT screen
void TFT_Set_Func(uint8_t brightness){ // The range of the display: 30 ~ 100Hz.
// float persent;
static bool pwm_start = false;
// if(brightness <= 0) persent = 0;
// else{
// if(brightness > DISP_BRIGHTNESS_MAX) brightness = DISP_BRIGHTNESS_MAX;
// persent = brightness * 70 / DISP_BRIGHTNESS_MAX + 30;
// }
TIM1->CCR1 = (uint16_t)brightness * 10; // 30 is minimum value of the display frequency
if (pwm_start == false) {
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
pwm_start = true;
}
}
void SleepMode_Func(bool sleep, uint8_t brightness){
if(sleep){
if(Sleep_status) brightness = 0;
TFT_Set_Func(brightness);
}
}
// LED Control Function
void LED_Set_Func(bool status, uint8_t light_val){
//float persent;
static bool pwm_run = false;
if(status){
// if(light_val > LED_BRIGHTNESS_MAX) light_val = LED_BRIGHTNESS_MAX;
// if(light_val <= 0) persent = 0;
// else persent = light_val * 60 / LED_BRIGHTNESS_MAX + 40;
TIM4->CCR3 = (uint16_t)light_val*10;//(100 - persent);
if (pwm_run == false) {
HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_3);
pwm_run = true;
}
}
else{
TIM4->CCR3 = 0;
if (pwm_run != false) {
HAL_TIM_PWM_Stop(&htim4, TIM_CHANNEL_3);
pwm_run = false;
}
}
}
// Buzzer Control Function
void Sound_Set_Func(bool status, uint8_t volume, uint16_t timeline){
volatile uint16_t persent;
static bool pwm_run = false;
if(status){ // If buzzer is enabled
if(volume <= 0) persent = 0;
else{
if(volume > VOLUME_MAX) volume = VOLUME_MAX;
persent = (volume * 50) / VOLUME_MAX;
}
TIM1->CCR2 = persent >> 2;
if (pwm_run == false) {
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2);
pwm_run = true;
}
if(persent == 0) sound_flag = 0;
else{
sound_flag = 1; vol_timeline = timeline;
}
}
else{ // If buzzer is disabled
TIM1->CCR2 = 0;
if (pwm_run != false) {
HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_2);
pwm_run = false;
}
}
}
static const float _fir_coefficient[] = {
-0.00284683,
-0.00803552,
-0.01439099,
-0.01685624,
-0.00823138,
0.01749503,
0.06086587,
0.11439408,
0.16388395,
0.19372203,
0.19372203,
0.16388395,
0.11439408,
0.06086587,
0.01749503,
-0.00823138,
-0.01685624,
-0.01439099,
-0.00803552,
-0.00284683
};
#define _filter_depth (sizeof(_fir_coefficient) / sizeof(_fir_coefficient[0]))
float samples[_filter_depth];
static float filter (float in_data, float *bufer_pnt, bool fill_buf)
{
if (fill_buf == true) {
for (uint16_t i = 0; i < _filter_depth; i++) {
bufer_pnt[i] = in_data;
}
}
for (uint16_t i = 1; i < _filter_depth; i++) {
bufer_pnt[i - 1] = bufer_pnt[i];
}
bufer_pnt[_filter_depth - 1] = in_data;
float samples_sum = 0;
for (uint16_t i = 0; i < _filter_depth; i++) {
samples_sum += (float) bufer_pnt[i] * _fir_coefficient[i];
}
return samples_sum;
}
/**
* @brief Calculate temperature of NTC
* @param [in] analog ADC value
* @param [in] baseDiv if connected like (GND -- Rt -- ADC -- R -- VCC) R/Rt
* @param [in] B B param of termistor
* @param [in] t t0 of termistor (25 deg C)
* @param [in] res ADC resolution
* @retval temperature in deg C
*/
float NTC_compute(float analog, float baseDiv, uint16_t B, uint8_t t, uint8_t res) {
analog = baseDiv / ((float)((1 << res) - 1) / analog - 1.0f);
analog = (log(analog) / B) + 1.0f / (t + 273.15f);
return (1.0f / analog - 273.15f);
}
double LPOUT=0,LPACC=0;
extern float test_trmp;
bool update_temp = true;
const int K = 500;
void Temp_Correction_Func(void){
static bool first_filter_run = true;
LPOUT=0,LPACC=0;
int i = 0;
if (update_temp == false) {
return;
}
update_temp = false;
// Get ADC value
// HAL_ADC_Start(&hadc1);
// HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);
//for(i = 0; i < K; i++){
LPACC = HAL_ADC_GetValue(&hadc1);
//HAL_Delay(1);
//}
LPOUT = LPACC;// / K;
#if 0
LPOUT = LPOUT * 5.1 / (4096.0 - LPOUT);
if(temp_ref[0] + 0.2 <= LPOUT) disp_buf.temp_val = -40.0;
else if(temp_ref[33] - 0.2 >= LPOUT) disp_buf.temp_val = 125.0;
else{
for(i = 0; i < 34; i++){
if((temp_ref[i] + 0.2 >= LPOUT) && (temp_ref[i] - 0.2 <= LPOUT)){
disp_buf.temp_val = (i * 5) - 40;
break;
}
else if(temp_ref[i] < LPOUT){
if(temp_ref[i-1] - 0.2 > LPOUT){
if(LPOUT <= temp_ref[i] + ((temp_ref[i-1]-temp_ref[i])/5)){
disp_buf.temp_val = (i * 5) - 40 - 1;
}
else if(LPOUT <= temp_ref[i] + (temp_ref[i-1]-temp_ref[i])*2/5){
disp_buf.temp_val = (i * 5) - 40 - 2;
}
else if(LPOUT <= temp_ref[i] + (temp_ref[i-1]-temp_ref[i])*3/5){
disp_buf.temp_val = (i * 5) - 40 - 3;
}
else disp_buf.temp_val = (i * 5) - 40 - 4;
break;
}
}
}
}
#elif 0
double output_voltage, thermistor_resistance, therm_res_ln;
//float thermistor_adc_val = LPOUT;
output_voltage = ( ((float)LPOUT * 3.3) / (4095.0));
thermistor_resistance = ( ( 3.3 * ( 10.0 / output_voltage ) ) - 10 ); /* Resistance in kilo ohms */
thermistor_resistance = thermistor_resistance * 1000 ; /* Resistance in ohms */
therm_res_ln = log(thermistor_resistance);
/* Steinhart-Hart Thermistor Equation: */
/* Temperature in Kelvin = 1 / (A + B[ln(R)] + C[ln(R)]^3) */
/* where A = 0.001129148, B = 0.000234125 and C = 8.76741*10^-8 */
disp_buf.temp_val = ( 1 / ( 0.001129148 + ( 0.000234125 * therm_res_ln ) + ( 0.0000000876741 * therm_res_ln * therm_res_ln * therm_res_ln ) ) ); /* Temperature in Kelvin */
disp_buf.temp_val -= 273.15;
disp_buf.temp_val += 70.0;
disp_buf.temp_val = filter(disp_buf.temp_val, samples, first_filter_run);
first_filter_run = false;
#else
/*
test data
temperature R of thermistor ADC value
-40 334274 4034
0 32624 3542
25 10000 2712
70 1748 1045
125 337 235
ex
LPOUT = 2712; // should return 25 deg C
*/
disp_buf.temp_val = NTC_compute((float) LPOUT, 5.1/10.0, 3984.0, 25, 12);
//disp_buf.temp_val = 10.0 + (10.0 * ((float) rand()/(float)RAND_MAX));
disp_buf.temp_val = filter(disp_buf.temp_val, samples, first_filter_run);
first_filter_run = false;
#endif
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */