ReykorSlave/Drivers/STM32C0xx_HAL_Driver/Inc/stm32c0xx_hal_rcc.h

2202 lines
117 KiB
C

/**
******************************************************************************
* @file stm32c0xx_hal_rcc.h
* @author MCD Application Team
* @brief Header file of RCC HAL module.
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef STM32C0xx_HAL_RCC_H
#define STM32C0xx_HAL_RCC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "stm32c0xx_hal_def.h"
#include "stm32c0xx_ll_rcc.h"
/** @addtogroup STM32C0xx_HAL_Driver
* @{
*/
/** @addtogroup RCC
* @{
*/
/* Private constants ---------------------------------------------------------*/
/** @addtogroup RCC_Private_Constants
* @{
*/
/** @defgroup RCC_Timeout_Value Timeout Values
* @{
*/
#define RCC_LSE_TIMEOUT_VALUE LSE_STARTUP_TIMEOUT /* LSE timeout in ms */
/**
* @}
*/
/* Defines used for Flags */
#define RCC_CR_REG_INDEX 1U
#define RCC_CSR1_REG_INDEX 2U
#define RCC_CSR2_REG_INDEX 3U
#if defined(RCC_HSI48_SUPPORT)
#define RCC_CRRCR_REG_INDEX 4U
#endif /* RCC_HSI48_SUPPORT */
#define RCC_FLAG_MASK 0x1FU
/* Define used for IS_RCC_CLOCKTYPE() */
#define RCC_CLOCKTYPE_ALL (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1) /*!< All clocktype to configure */
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup RCC_Private_Macros
* @{
*/
#if defined(RCC_CR_HSIUSB48ON)
#define IS_RCC_OSCILLATORTYPE(__OSCILLATOR__) \
(((__OSCILLATOR__) == RCC_OSCILLATORTYPE_NONE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE))
#else
#define IS_RCC_OSCILLATORTYPE(__OSCILLATOR__) \
(((__OSCILLATOR__) == RCC_OSCILLATORTYPE_NONE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) || \
(((__OSCILLATOR__) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE))
#endif /* RCC_CR_HSIUSB48ON */
#define IS_RCC_HSE(__HSE__) (((__HSE__) == RCC_HSE_OFF) || ((__HSE__) == RCC_HSE_ON) || \
((__HSE__) == RCC_HSE_BYPASS))
#define IS_RCC_LSE(__LSE__) (((__LSE__) == RCC_LSE_OFF) || ((__LSE__) == RCC_LSE_ON) || \
((__LSE__) == RCC_LSE_BYPASS))
#define IS_RCC_HSI(__HSI__) (((__HSI__) == RCC_HSI_OFF) || ((__HSI__) == RCC_HSI_ON))
#if defined(RCC_CR_HSIUSB48ON)
#define IS_RCC_HSI48(__HSI48__) (((__HSI48__) == RCC_HSI48_OFF) || ((__HSI48__) == RCC_HSI48_ON))
#endif /* RCC_CR_HSIUSB48ON */
#define IS_RCC_HSI_CALIBRATION_VALUE(__VALUE__) ((__VALUE__) <= (uint32_t)127U)
#define IS_RCC_HSIDIV(__DIV__) (((__DIV__) == RCC_HSI_DIV1) || ((__DIV__) == RCC_HSI_DIV2) || \
((__DIV__) == RCC_HSI_DIV4) || ((__DIV__) == RCC_HSI_DIV8) || \
((__DIV__) == RCC_HSI_DIV16) || ((__DIV__) == RCC_HSI_DIV32)|| \
((__DIV__) == RCC_HSI_DIV64) || ((__DIV__) == RCC_HSI_DIV128))
#define IS_RCC_LSI(__LSI__) (((__LSI__) == RCC_LSI_OFF) || ((__LSI__) == RCC_LSI_ON))
#define IS_RCC_CLOCKTYPE(__CLK__) ((((__CLK__)\
& RCC_CLOCKTYPE_ALL) != 0x00UL) && (((__CLK__) & ~RCC_CLOCKTYPE_ALL) == 0x00UL))
#if defined(RCC_HSI48_SUPPORT)
#define IS_RCC_SYSCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_SYSCLKSOURCE_HSI) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_HSE) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_HSIUSB48) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_LSE) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_LSI))
#else
#define IS_RCC_SYSCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_SYSCLKSOURCE_HSI) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_HSE) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_LSE) || \
((__SOURCE__) == RCC_SYSCLKSOURCE_LSI))
#endif /* RCC_HSI48_SUPPORT */
#if defined(RCC_CR_SYSDIV)
#define IS_RCC_SYSCLK(SYSCLK) (((SYSCLK) == RCC_SYSCLK_DIV1) || ((SYSCLK) == RCC_SYSCLK_DIV2) || \
((SYSCLK) == RCC_SYSCLK_DIV3) || ((SYSCLK) == RCC_SYSCLK_DIV4) || \
((SYSCLK) == RCC_SYSCLK_DIV5) || ((SYSCLK) == RCC_SYSCLK_DIV6) || \
((SYSCLK) == RCC_SYSCLK_DIV7) || ((SYSCLK) == RCC_SYSCLK_DIV8))
#else
#define IS_RCC_SYSCLK(SYSCLK) ((SYSCLK) == RCC_SYSCLK_DIV1)
#endif /* RCC_CR_SYSDIV */
#define IS_RCC_HCLK(HCLK) (((HCLK) == RCC_HCLK_DIV1) || ((HCLK) == RCC_HCLK_DIV2) || \
((HCLK) == RCC_HCLK_DIV4) || ((HCLK) == RCC_HCLK_DIV8) || \
((HCLK) == RCC_HCLK_DIV16) || ((HCLK) == RCC_HCLK_DIV64) || \
((HCLK) == RCC_HCLK_DIV128) || ((HCLK) == RCC_HCLK_DIV256) || \
((HCLK) == RCC_HCLK_DIV512))
#define IS_RCC_PCLK(__PCLK__) (((__PCLK__) == RCC_APB1_DIV1) || ((__PCLK__) == RCC_APB1_DIV2) || \
((__PCLK__) == RCC_APB1_DIV4) || ((__PCLK__) == RCC_APB1_DIV8) || \
((__PCLK__) == RCC_APB1_DIV16))
#define IS_RCC_RTCCLKSOURCE(__SOURCE__) (((__SOURCE__) == RCC_RTCCLKSOURCE_NONE) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_LSE) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_LSI) || \
((__SOURCE__) == RCC_RTCCLKSOURCE_HSE_DIV32))
#if defined(STM32C011xx)
#define IS_RCC_MCO(__MCOX__) (((__MCOX__) == RCC_MCO1_PA8) || \
((__MCOX__) == RCC_MCO1_PA9) || \
((__MCOX__) == RCC_MCO1_PF2) || \
((__MCOX__) == RCC_MCO2_PA8) || \
((__MCOX__) == RCC_MCO2_PA10) || \
((__MCOX__) == RCC_MCO2_PA14))
#else
#define IS_RCC_MCO(__MCOX__) (((__MCOX__) == RCC_MCO1_PA8) || \
((__MCOX__) == RCC_MCO1_PA9) || \
((__MCOX__) == RCC_MCO1_PF2) || \
((__MCOX__) == RCC_MCO2_PA8) || \
((__MCOX__) == RCC_MCO2_PA10) || \
((__MCOX__) == RCC_MCO2_PA14) || \
((__MCOX__) == RCC_MCO2_PA15) || \
((__MCOX__) == RCC_MCO2_PB2))
#endif /* STM32C011xx */
#if defined(RCC_CR_HSIUSB48ON)
#define IS_RCC_MCO1SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO1SOURCE_NOCLOCK) || \
((__SOURCE__) == RCC_MCO1SOURCE_SYSCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSI48) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSE) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSE))
#else
#define IS_RCC_MCO1SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO1SOURCE_NOCLOCK) || \
((__SOURCE__) == RCC_MCO1SOURCE_SYSCLK) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_HSE) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSI) || \
((__SOURCE__) == RCC_MCO1SOURCE_LSE))
#endif /* RCC_CR_HSIUSB48ON */
#if defined(RCC_CR_HSIUSB48ON)
#define IS_RCC_MCO2SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO2SOURCE_NOCLOCK) || \
((__SOURCE__) == RCC_MCO2SOURCE_SYSCLK) || \
((__SOURCE__) == RCC_MCO2SOURCE_HSI48) || \
((__SOURCE__) == RCC_MCO2SOURCE_HSI) || \
((__SOURCE__) == RCC_MCO2SOURCE_HSE) || \
((__SOURCE__) == RCC_MCO2SOURCE_LSI) || \
((__SOURCE__) == RCC_MCO2SOURCE_LSE))
#else
#define IS_RCC_MCO2SOURCE(__SOURCE__) (((__SOURCE__) == RCC_MCO2SOURCE_NOCLOCK) || \
((__SOURCE__) == RCC_MCO2SOURCE_SYSCLK) || \
((__SOURCE__) == RCC_MCO2SOURCE_HSI) || \
((__SOURCE__) == RCC_MCO2SOURCE_HSE) || \
((__SOURCE__) == RCC_MCO2SOURCE_LSI) || \
((__SOURCE__) == RCC_MCO2SOURCE_LSE))
#endif /* RCC_CR_HSIUSB48ON */
#if defined(RCC_CFGR_MCOPRE_3)
#define IS_RCC_MCODIV(__DIV__) (((__DIV__) == RCC_MCODIV_1) || ((__DIV__) == RCC_MCODIV_2) || \
((__DIV__) == RCC_MCODIV_4) || ((__DIV__) == RCC_MCODIV_8) || \
((__DIV__) == RCC_MCODIV_16)|| ((__DIV__) == RCC_MCODIV_32) || \
((__DIV__) == RCC_MCODIV_64)|| ((__DIV__) == RCC_MCODIV_128) || \
((__DIV__) == RCC_MCODIV_256)|| ((__DIV__) == RCC_MCODIV_512) || \
((__DIV__) == RCC_MCODIV_1024))
#else
#define IS_RCC_MCODIV(__DIV__) (((__DIV__) == RCC_MCODIV_1) || ((__DIV__) == RCC_MCODIV_2) || \
((__DIV__) == RCC_MCODIV_4) || ((__DIV__) == RCC_MCODIV_8) || \
((__DIV__) == RCC_MCODIV_16)|| ((__DIV__) == RCC_MCODIV_32) || \
((__DIV__) == RCC_MCODIV_64)|| ((__DIV__) == RCC_MCODIV_128))
#endif /* RCC_CFGR_MCOPRE_3 */
#if defined(RCC_CFGR_MCO2PRE_3)
#define IS_RCC_MCO2DIV(__DIV__) (((__DIV__) == RCC_MCO2DIV_1) || ((__DIV__) == RCC_MCO2DIV_2) || \
((__DIV__) == RCC_MCO2DIV_4) || ((__DIV__) == RCC_MCO2DIV_8) || \
((__DIV__) == RCC_MCO2DIV_16)|| ((__DIV__) == RCC_MCO2DIV_32) || \
((__DIV__) == RCC_MCO2DIV_64)|| ((__DIV__) == RCC_MCO2DIV_128) || \
((__DIV__) == RCC_MCO2DIV_256)|| ((__DIV__) == RCC_MCO2DIV_512) || \
((__DIV__) == RCC_MCO2DIV_1024))
#else
#define IS_RCC_MCO2DIV(__DIV__) (((__DIV__) == RCC_MCO2DIV_1) || ((__DIV__) == RCC_MCO2DIV_2) || \
((__DIV__) == RCC_MCO2DIV_4) || ((__DIV__) == RCC_MCO2DIV_8) || \
((__DIV__) == RCC_MCO2DIV_16)|| ((__DIV__) == RCC_MCO2DIV_32) || \
((__DIV__) == RCC_MCO2DIV_64)|| ((__DIV__) == RCC_MCO2DIV_128))
#endif /* RCC_CFGR_MCO2PRE_3 */
#define IS_RCC_LSE_DRIVE(__DRIVE__) (((__DRIVE__) == RCC_LSEDRIVE_LOW) || \
((__DRIVE__) == RCC_LSEDRIVE_MEDIUMLOW) || \
((__DRIVE__) == RCC_LSEDRIVE_MEDIUMHIGH) || \
((__DRIVE__) == RCC_LSEDRIVE_HIGH))
/**
* @}
*/
/* Exported types ------------------------------------------------------------*/
/** @defgroup RCC_Exported_Types RCC Exported Types
* @{
*/
/**
* @brief RCC Internal/External Oscillator (HSE, HSI, LSE and LSI) configuration structure definition
*/
typedef struct
{
uint32_t OscillatorType; /*!< The oscillators to be configured.
This parameter can be a value of @ref RCC_Oscillator_Type */
uint32_t HSEState; /*!< The new state of the HSE.
This parameter can be a value of @ref RCC_HSE_Config */
uint32_t LSEState; /*!< The new state of the LSE.
This parameter can be a value of @ref RCC_LSE_Config */
uint32_t HSIState; /*!< The new state of the HSI.
This parameter can be a value of @ref RCC_HSI_Config */
uint32_t HSIDiv; /*!< The division factor of the HSI48.
This parameter can be a value of @ref RCC_HSI_Div */
uint32_t HSICalibrationValue; /*!< The calibration trimming value (default is RCC_HSICALIBRATION_DEFAULT).
This parameter must be a number between Min_Data = 0x00 and Max_Data = 0x7F */
uint32_t LSIState; /*!< The new state of the LSI.
This parameter can be a value of @ref RCC_LSI_Config */
#if defined(RCC_CR_HSIUSB48ON)
uint32_t HSI48State; /*!< The new state of the HSI48 (only applicable to STM32C071xx devices).
This parameter can be a value of @ref RCC_HSI48_Config */
#endif /* RCC_CR_HSIUSB48ON */
} RCC_OscInitTypeDef;
/**
* @brief RCC System, AHB and APB busses clock configuration structure definition
*/
typedef struct
{
uint32_t ClockType; /*!< The clock to be configured.
This parameter can be a combination of @ref RCC_System_Clock_Type */
uint32_t SYSCLKSource; /*!< The clock source used as system clock (SYSCLK).
This parameter can be a value of @ref RCC_System_Clock_Source */
uint32_t SYSCLKDivider; /*!< The system clock divider. This parameter can be
a value of @ref RCC_SYS_Clock_Divider */
uint32_t AHBCLKDivider; /*!< The AHB clock (HCLK) divider. This clock is derived from the system clock (SYSCLK).
This parameter can be a value of @ref RCC_HCLK_Clock_Divider */
uint32_t APB1CLKDivider; /*!< The APB1 clock (PCLK1) divider. This clock is derived from the AHB clock (HCLK).
This parameter can be a value of @ref RCC_APB1_Clock_Divider */
} RCC_ClkInitTypeDef;
/**
* @}
*/
/* Exported constants --------------------------------------------------------*/
/** @defgroup RCC_Exported_Constants RCC Exported Constants
* @{
*/
/** @defgroup RCC_Oscillator_Type Oscillator Type
* @{
*/
#define RCC_OSCILLATORTYPE_NONE 0x00000000U /*!< Oscillator configuration unchanged */
#define RCC_OSCILLATORTYPE_HSE 0x00000001U /*!< HSE to configure */
#define RCC_OSCILLATORTYPE_HSI 0x00000002U /*!< HSI to configure */
#define RCC_OSCILLATORTYPE_LSE 0x00000004U /*!< LSE to configure */
#define RCC_OSCILLATORTYPE_LSI 0x00000008U /*!< LSI to configure */
#if defined(RCC_CR_HSIUSB48ON)
#define RCC_OSCILLATORTYPE_HSI48 0x00000010U /*!< HSI48 to configure */
#endif /* RCC_CR_HSIUSB48ON */
/**
* @}
*/
/** @defgroup RCC_HSE_Config HSE Config
* @{
*/
#define RCC_HSE_OFF 0x00000000U /*!< HSE clock deactivation */
#define RCC_HSE_ON RCC_CR_HSEON /*!< HSE clock activation */
#define RCC_HSE_BYPASS ((uint32_t)(RCC_CR_HSEBYP | RCC_CR_HSEON)) /*!< External clock source for HSE clock */
/**
* @}
*/
/** @defgroup RCC_LSE_Config LSE Config
* @{
*/
#define RCC_LSE_OFF 0x00000000U /*!< LSE clock deactivation */
#define RCC_LSE_ON RCC_CSR1_LSEON /*!< LSE clock activation */
#define RCC_LSE_BYPASS ((uint32_t)(RCC_CSR1_LSEBYP | RCC_CSR1_LSEON)) /*!< External clock source for LSE clock */
/**
* @}
*/
/** @defgroup RCC_HSI_Config HSI Config
* @{
*/
#define RCC_HSI_OFF 0x00000000U /*!< HSI clock deactivation */
#define RCC_HSI_ON RCC_CR_HSION /*!< HSI clock activation */
#define RCC_HSICALIBRATION_DEFAULT 64U /*!< Default HSI calibration trimming value */
/**
* @}
*/
/** @defgroup RCC_HSI_Div HSI Div
* @{
*/
#define RCC_HSI_DIV1 0x00000000U /*!< HSI clock is not divided */
#define RCC_HSI_DIV2 RCC_CR_HSIDIV_0 /*!< HSI clock is divided by 2 */
#define RCC_HSI_DIV4 RCC_CR_HSIDIV_1 /*!< HSI clock is divided by 4 */
#define RCC_HSI_DIV8 (RCC_CR_HSIDIV_1|RCC_CR_HSIDIV_0) /*!< HSI clock is divided by 8 */
#define RCC_HSI_DIV16 RCC_CR_HSIDIV_2 /*!< HSI clock is divided by 16 */
#define RCC_HSI_DIV32 (RCC_CR_HSIDIV_2|RCC_CR_HSIDIV_0) /*!< HSI clock is divided by 32 */
#define RCC_HSI_DIV64 (RCC_CR_HSIDIV_2|RCC_CR_HSIDIV_1) /*!< HSI clock is divided by 64 */
#define RCC_HSI_DIV128 (RCC_CR_HSIDIV_2|RCC_CR_HSIDIV_1|RCC_CR_HSIDIV_0) /*!< HSI clock is divided by 128 */
/**
* @}
*/
/** @defgroup RCC_LSI_Config LSI Config
* @{
*/
#define RCC_LSI_OFF 0x00000000U /*!< LSI clock deactivation */
#define RCC_LSI_ON RCC_CSR2_LSION /*!< LSI clock activation */
/**
* @}
*/
#if defined(RCC_CR_HSIUSB48ON)
/** @defgroup RCC_HSI48_Config HSI48 Config
* @{
*/
#define RCC_HSI48_OFF 0x00000000U /*!< HSI48 clock deactivation */
#define RCC_HSI48_ON RCC_CR_HSIUSB48ON /*!< HSI48 clock activation */
/**
* @}
*/
#endif /* RCC_CR_HSIUSB48ON */
/** @defgroup RCC_System_Clock_Type System Clock Type
* @{
*/
#define RCC_CLOCKTYPE_SYSCLK 0x00000001U /*!< SYSCLK to configure */
#define RCC_CLOCKTYPE_HCLK 0x00000002U /*!< HCLK to configure */
#define RCC_CLOCKTYPE_PCLK1 0x00000004U /*!< PCLK1 to configure */
/**
* @}
*/
/** @defgroup RCC_System_Clock_Source System Clock Source
* @{
*/
#define RCC_SYSCLKSOURCE_HSI 0x00000000U /*!< HSI selection as system clock */
#define RCC_SYSCLKSOURCE_HSE RCC_CFGR_SW_0 /*!< HSE selection as system clock */
#if defined(RCC_HSI48_SUPPORT)
#define RCC_SYSCLKSOURCE_HSIUSB48 RCC_CFGR_SW_1 /*!< HSIUSB48 selection used as system clock */
#endif /* RCC_HSI48_SUPPORT */
#define RCC_SYSCLKSOURCE_LSI (RCC_CFGR_SW_1 | RCC_CFGR_SW_0) /*!< LSI selection as system clock */
#define RCC_SYSCLKSOURCE_LSE RCC_CFGR_SW_2 /*!< LSE selection as system clock */
/**
* @}
*/
/** @defgroup RCC_System_Clock_Source_Status System Clock Source Status
* @{
*/
#define RCC_SYSCLKSOURCE_STATUS_HSI 0x00000000U /*!< HSI used as system clock */
#define RCC_SYSCLKSOURCE_STATUS_HSE RCC_CFGR_SWS_0 /*!< HSE used as system clock */
#if defined(RCC_HSI48_SUPPORT)
#define RCC_SYSCLKSOURCE_STATUS_HSIUSB48 RCC_CFGR_SWS_1 /*!< HSIUSB48 used as system clock */
#endif /* RCC_HSI48_SUPPORT */
#define RCC_SYSCLKSOURCE_STATUS_LSI (RCC_CFGR_SWS_1 | RCC_CFGR_SWS_0) /*!< LSI used as system clock */
#define RCC_SYSCLKSOURCE_STATUS_LSE RCC_CFGR_SWS_2 /*!< LSE used as system clock */
/**
* @}
*/
/** @defgroup RCC_SYS_Clock_Divider RCC SYS Clock Divider
* @{
*/
#if defined(RCC_CR_SYSDIV)
#define RCC_SYSCLK_DIV1 0x00000000U /*!< SYSCLK not divided */
#define RCC_SYSCLK_DIV2 RCC_CR_SYSDIV_0 /*!< SYSCLK is divided by 2 */
#define RCC_SYSCLK_DIV3 RCC_CR_SYSDIV_1 /*!< SYSCLK is divided by 3 */
#define RCC_SYSCLK_DIV4 (RCC_CR_SYSDIV_1 | RCC_CR_SYSDIV_0) /*!< SYSCLK is divided by 4 */
#define RCC_SYSCLK_DIV5 RCC_CR_SYSDIV_2 /*!< SYSCLK is divided by 5 */
#define RCC_SYSCLK_DIV6 (RCC_CR_SYSDIV_2 | RCC_CR_SYSDIV_0) /*!< SYSCLK is divided by 6 */
#define RCC_SYSCLK_DIV7 (RCC_CR_SYSDIV_2 | RCC_CR_SYSDIV_1) /*!< SYSCLK is divided by 7 */
#define RCC_SYSCLK_DIV8 (RCC_CR_SYSDIV_2 | RCC_CR_SYSDIV_1 | RCC_CR_SYSDIV_0) /*!< SYSCLK is divided by 8 */
#else
#define RCC_SYSCLK_DIV1 0x00000000U /*!< SYSCLK not divided */
#endif /* RCC_CR_SYSDIV */
/**
* @}
*/
/** @defgroup RCC_HCLK_Clock_Divider RCC HCLK Clock Divider
* @{
*/
#define RCC_HCLK_DIV1 0x00000000U /*!< HCLK not divided */
#define RCC_HCLK_DIV2 RCC_CFGR_HPRE_3 /*!< HCLK divided by 2 */
#define RCC_HCLK_DIV4 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_0) /*!< HCLK divided by 4 */
#define RCC_HCLK_DIV8 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1) /*!< HCLK divided by 8 */
#define RCC_HCLK_DIV16 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< HCLK divided by 16 */
#define RCC_HCLK_DIV64 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2) /*!< HCLK divided by 64 */
#define RCC_HCLK_DIV128 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_0) /*!< HCLK divided by 128 */
#define RCC_HCLK_DIV256 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1) /*!< HCLK divided by 256 */
#define RCC_HCLK_DIV512 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< HCLK divided by 512 */
/**
* @}
*/
/** @defgroup RCC_APB1_Clock_Divider RCC APB1 Clock Divider
* @{
*/
#define RCC_APB1_DIV1 0x00000000U /*!< APB not divided */
#define RCC_APB1_DIV2 RCC_CFGR_PPRE_2 /*!< APB divided by 2 */
#define RCC_APB1_DIV4 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_0) /*!< APB divided by 4 */
#define RCC_APB1_DIV8 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_1) /*!< APB divided by 4 */
#define RCC_APB1_DIV16 (RCC_CFGR_PPRE_2 | RCC_CFGR_PPRE_1 | RCC_CFGR_PPRE_0) /*!< APB divided by 16 */
/**
* @}
*/
/** @defgroup RCC_RTC_Clock_Source RTC Clock Source
* @{
*/
#define RCC_RTCCLKSOURCE_NONE 0x00000000U /*!< No clock configured for RTC */
#define RCC_RTCCLKSOURCE_LSE RCC_CSR1_RTCSEL_0 /*!< LSE oscillator clock used as RTC clock */
#define RCC_RTCCLKSOURCE_LSI RCC_CSR1_RTCSEL_1 /*!< LSI oscillator clock used as RTC clock */
#define RCC_RTCCLKSOURCE_HSE_DIV32 RCC_CSR1_RTCSEL /*!< HSE oscillator clock divided by 32 used as RTC clock */
/**
* @}
*/
/** @defgroup RCC_MCO_Index MCO Index
* @{
*/
/* @cond */
/* 32 28 20 16 0
--------------------------------
| MCO | GPIO | GPIO | GPIO |
| Index | AF | Port | Pin |
-------------------------------*/
#define RCC_MCO_GPIOPORT_POS 16U
#define RCC_MCO_GPIOPORT_MASK (0xFUL << RCC_MCO_GPIOPORT_POS)
#define RCC_MCO_GPIOAF_POS 20U
#define RCC_MCO_GPIOAF_MASK (0xFFUL << RCC_MCO_GPIOAF_POS)
#define RCC_MCO_INDEX_POS 28U
#define RCC_MCO_INDEX_MASK (0x1UL << RCC_MCO_INDEX_POS)
#define RCC_MCO1_INDEX (0x0UL << RCC_MCO_INDEX_POS) /*!< MCO1 index */
#define RCC_MCO2_INDEX (0x1UL << RCC_MCO_INDEX_POS) /*!< MCO2 index */
/* @endcond */
#define RCC_MCO1_PA8 (RCC_MCO1_INDEX |\
(GPIO_AF0_MCO << RCC_MCO_GPIOAF_POS) | \
(GPIO_GET_INDEX(GPIOA) << RCC_MCO_GPIOPORT_POS) | GPIO_PIN_8)
#define RCC_MCO1_PA9 (RCC_MCO1_INDEX |\
(GPIO_AF0_MCO << RCC_MCO_GPIOAF_POS) | \
(GPIO_GET_INDEX(GPIOA) << RCC_MCO_GPIOPORT_POS) | GPIO_PIN_9)
#define RCC_MCO1_PF2 (RCC_MCO1_INDEX |\
(GPIO_AF0_MCO << RCC_MCO_GPIOAF_POS) | \
(GPIO_GET_INDEX(GPIOF) << RCC_MCO_GPIOPORT_POS) | GPIO_PIN_2)
#define RCC_MCO1 RCC_MCO1_PA8 /*!< Alias for compatibility */
#define RCC_MCO2_PA8 (RCC_MCO2_INDEX |\
(GPIO_AF15_MCO2 << RCC_MCO_GPIOAF_POS) | \
(GPIO_GET_INDEX(GPIOA) << RCC_MCO_GPIOPORT_POS) | GPIO_PIN_8)
#define RCC_MCO2_PA10 (RCC_MCO2_INDEX |\
(GPIO_AF3_MCO2 << RCC_MCO_GPIOAF_POS) | \
(GPIO_GET_INDEX(GPIOA) << RCC_MCO_GPIOPORT_POS) | GPIO_PIN_10)
#define RCC_MCO2_PA14 (RCC_MCO2_INDEX |\
(GPIO_AF11_MCO2 << RCC_MCO_GPIOAF_POS) | \
(GPIO_GET_INDEX(GPIOA) << RCC_MCO_GPIOPORT_POS) | GPIO_PIN_14)
#if !defined(STM32C011xx)
#define RCC_MCO2_PA15 (RCC_MCO2_INDEX |\
(GPIO_AF3_MCO2 << RCC_MCO_GPIOAF_POS) | \
(GPIO_GET_INDEX(GPIOA) << RCC_MCO_GPIOPORT_POS) | GPIO_PIN_15)
#define RCC_MCO2_PB2 (RCC_MCO2_INDEX |\
(GPIO_AF3_MCO2 << RCC_MCO_GPIOAF_POS) | \
(GPIO_GET_INDEX(GPIOB) << RCC_MCO_GPIOPORT_POS) | GPIO_PIN_2)
#endif /* STM32C011xx */
#define RCC_MCO2 RCC_MCO2_PA10 /*!< Alias for compatibility */
#define RCC_MCO RCC_MCO1 /*!< MCO1 to be compliant with other families with 1 MCO*/
/**
* @}
*/
/** @defgroup RCC_MCO1_Clock_Source MCO1 Clock Source
* @{
*/
#define RCC_MCO1SOURCE_NOCLOCK 0x00000000U /*!< MCO1 output disabled, no clock on MCO1 */
#define RCC_MCO1SOURCE_SYSCLK RCC_CFGR_MCOSEL_0 /*!< SYSCLK selection as MCO1 source */
#define RCC_MCO1SOURCE_HSI (RCC_CFGR_MCOSEL_0| RCC_CFGR_MCOSEL_1) /*!< HSI selection as MCO1 source */
#define RCC_MCO1SOURCE_HSE RCC_CFGR_MCOSEL_2 /*!< HSE selection as MCO1 source */
#define RCC_MCO1SOURCE_LSI (RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSI selection as MCO1 source */
#define RCC_MCO1SOURCE_LSE (RCC_CFGR_MCOSEL_0|RCC_CFGR_MCOSEL_1|RCC_CFGR_MCOSEL_2) /*!< LSE selection as MCO1 source */
#if defined(RCC_HSI48_SUPPORT)
#define RCC_MCO1SOURCE_HSI48 RCC_CFGR_MCOSEL_3 /*!< HSI48 selection as MCO1 source */
#endif /* RCC_HSI48_SUPPORT */
/**
* @}
*/
/** @defgroup RCC_MCO2_Clock_Source MCO2 Clock Source
* @{
*/
#define RCC_MCO2SOURCE_NOCLOCK 0x00000000U /*!< MCO2 output disabled, no clock on MCO2 */
#define RCC_MCO2SOURCE_SYSCLK RCC_CFGR_MCO2SEL_0 /*!< SYSCLK selection as MCO2 source */
#define RCC_MCO2SOURCE_HSI (RCC_CFGR_MCO2SEL_0| RCC_CFGR_MCO2SEL_1) /*!< HSI selection as MCO2 source */
#define RCC_MCO2SOURCE_HSE RCC_CFGR_MCO2SEL_2 /*!< HSE selection as MCO2 source */
#define RCC_MCO2SOURCE_LSI (RCC_CFGR_MCO2SEL_1|RCC_CFGR_MCO2SEL_2) /*!< LSI selection as MCO2 source */
#define RCC_MCO2SOURCE_LSE (RCC_CFGR_MCO2SEL_0|RCC_CFGR_MCO2SEL_1|RCC_CFGR_MCO2SEL_2) /*!< LSE selection as MCO2 source */
#if defined(RCC_HSI48_SUPPORT)
#define RCC_MCO2SOURCE_HSI48 RCC_CFGR_MCO2SEL_3 /*!< HSI48 selection as MCO2 source */
#endif /* RCC_HSI48_SUPPORT */
/**
* @}
*/
/** @defgroup RCC_MCO1_Clock_Prescaler MCO1 Clock Prescaler
* @{
*/
#define RCC_MCODIV_1 0x00000000U /*!< MCO not divided */
#define RCC_MCODIV_2 RCC_CFGR_MCOPRE_0 /*!< MCO divided by 2 */
#define RCC_MCODIV_4 RCC_CFGR_MCOPRE_1 /*!< MCO divided by 4 */
#define RCC_MCODIV_8 (RCC_CFGR_MCOPRE_1 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 8 */
#define RCC_MCODIV_16 RCC_CFGR_MCOPRE_2 /*!< MCO divided by 16 */
#define RCC_MCODIV_32 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 32 */
#define RCC_MCODIV_64 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_1) /*!< MCO divided by 64 */
#define RCC_MCODIV_128 (RCC_CFGR_MCOPRE_2 | RCC_CFGR_MCOPRE_1 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 128 */
#if defined(RCC_CFGR_MCOPRE_3)
#define RCC_MCODIV_256 RCC_CFGR_MCOPRE_3 /*!< MCO divided by 256 */
#define RCC_MCODIV_512 (RCC_CFGR_MCOPRE_3 | RCC_CFGR_MCOPRE_0) /*!< MCO divided by 512 */
#define RCC_MCODIV_1024 (RCC_CFGR_MCOPRE_3 | RCC_CFGR_MCOPRE_1) /*!< MCO divided by 1024*/
#endif /* RCC_CFGR_MCOPRE_3 */
/**
* @}
*/
/** @defgroup RCC_MCO2_Clock_Prescaler MCO2 Clock Prescaler
* @{
*/
#define RCC_MCO2DIV_1 0x00000000U /*!< MCO not divided */
#define RCC_MCO2DIV_2 RCC_CFGR_MCO2PRE_0 /*!< MCO divided by 2 */
#define RCC_MCO2DIV_4 RCC_CFGR_MCO2PRE_1 /*!< MCO divided by 4 */
#define RCC_MCO2DIV_8 (RCC_CFGR_MCO2PRE_1 | RCC_CFGR_MCO2PRE_0) /*!< MCO divided by 8 */
#define RCC_MCO2DIV_16 RCC_CFGR_MCO2PRE_2 /*!< MCO divided by 16 */
#define RCC_MCO2DIV_32 (RCC_CFGR_MCO2PRE_2 | RCC_CFGR_MCO2PRE_0) /*!< MCO divided by 32 */
#define RCC_MCO2DIV_64 (RCC_CFGR_MCO2PRE_2 | RCC_CFGR_MCO2PRE_1) /*!< MCO divided by 64 */
#define RCC_MCO2DIV_128 (RCC_CFGR_MCO2PRE_2 | RCC_CFGR_MCO2PRE_1 | RCC_CFGR_MCO2PRE_0) /*!< MCO divided by 128 */
#if defined(RCC_CFGR_MCO2PRE_3)
#define RCC_MCO2DIV_256 RCC_CFGR_MCO2PRE_3 /*!< MCO divided by 256 */
#define RCC_MCO2DIV_512 (RCC_CFGR_MCO2PRE_3 | RCC_CFGR_MCO2PRE_0) /*!< MCO divided by 512 */
#define RCC_MCO2DIV_1024 (RCC_CFGR_MCO2PRE_3 | RCC_CFGR_MCO2PRE_1) /*!< MCO divided by 1024*/
#endif /* RCC_CFGR_MCO2PRE_3 */
/**
* @}
*/
/** @defgroup RCC_Interrupt Interrupts
* @{
*/
#define RCC_IT_LSIRDY RCC_CIFR_LSIRDYF /*!< LSI Ready Interrupt flag */
#define RCC_IT_LSERDY RCC_CIFR_LSERDYF /*!< LSE Ready Interrupt flag */
#define RCC_IT_HSIRDY RCC_CIFR_HSIRDYF /*!< HSI Ready Interrupt flag */
#define RCC_IT_HSERDY RCC_CIFR_HSERDYF /*!< HSE Ready Interrupt flag */
#define RCC_IT_CSS RCC_CIFR_CSSF /*!< HSE Clock Security System Interrupt flag */
#define RCC_IT_LSECSS RCC_CIFR_LSECSSF /*!< LSE Clock Security System Interrupt flag */
#if defined(RCC_HSI48_SUPPORT)
#define RCC_IT_HSI48RDY RCC_CIFR_HSIUSB48RDYF /*!< HSI48 Ready Interrupt flag */
#endif /* RCC_HSI48_SUPPORT */
/**
* @}
*/
/** @defgroup RCC_Flag Flags
* Elements values convention: XXXYYYYYb
* - YYYYY : Flag position in the register
* - XXX : Register index
* - 001: CR register
* - 010: CSR1 register
* - 011: CSR2 register
* @{
*/
/* Flags in the CR register */
#define RCC_FLAG_HSIRDY ((RCC_CR_REG_INDEX << 5U) | RCC_CR_HSIRDY_Pos) /*!< HSI Ready flag */
#define RCC_FLAG_HSERDY ((RCC_CR_REG_INDEX << 5U) | RCC_CR_HSERDY_Pos) /*!< HSE Ready flag */
#if defined(RCC_HSI48_SUPPORT)
/* Flags in the CR register */
#define RCC_FLAG_HSI48RDY ((CR_REG_INDEX << 5U) | RCC_CR_HSI48RDY_Pos) /*!< HSI48 Ready flag */
#endif /* RCC_HSI48_SUPPORT */
/* Flags in the CSR1 register */
#define RCC_FLAG_LSERDY ((RCC_CSR1_REG_INDEX << 5U) | RCC_CSR1_LSERDY_Pos) /*!< LSE Ready flag */
#define RCC_FLAG_LSECSSD ((RCC_CSR1_REG_INDEX << 5U) | RCC_CSR1_LSECSSD_Pos) /*!< LSE Clock Security System Interrupt flag */
/* Flags in the CSR2 register */
#define RCC_FLAG_LSIRDY ((RCC_CSR2_REG_INDEX << 5U) | RCC_CSR2_LSIRDY_Pos) /*!< LSI Ready flag */
#define RCC_FLAG_OBLRST ((RCC_CSR2_REG_INDEX << 5U) | RCC_CSR2_OBLRSTF_Pos) /*!< Option Byte Loader reset flag */
#define RCC_FLAG_PINRST ((RCC_CSR2_REG_INDEX << 5U) | RCC_CSR2_PINRSTF_Pos) /*!< PIN reset flag */
#define RCC_FLAG_PWRRST ((RCC_CSR2_REG_INDEX << 5U) | RCC_CSR2_PWRRSTF_Pos) /*!< BOR or POR/PDR reset flag */
#define RCC_FLAG_SFTRST ((RCC_CSR2_REG_INDEX << 5U) | RCC_CSR2_SFTRSTF_Pos) /*!< Software Reset flag */
#define RCC_FLAG_IWDGRST ((RCC_CSR2_REG_INDEX << 5U) | RCC_CSR2_IWDGRSTF_Pos) /*!< Independent Watchdog reset flag */
#define RCC_FLAG_WWDGRST ((RCC_CSR2_REG_INDEX << 5U) | RCC_CSR2_WWDGRSTF_Pos) /*!< Window watchdog reset flag */
#define RCC_FLAG_LPWRRST ((RCC_CSR2_REG_INDEX << 5U) | RCC_CSR2_LPWRRSTF_Pos) /*!< Low-Power reset flag */
/**
* @}
*/
/** @defgroup RCC_LSEDrive_Config LSE Drive Configuration
* @{
*/
#define RCC_LSEDRIVE_LOW 0x00000000U /*!< LSE low drive capability */
#define RCC_LSEDRIVE_MEDIUMLOW RCC_CSR1_LSEDRV_0 /*!< LSE medium low drive capability */
#define RCC_LSEDRIVE_MEDIUMHIGH RCC_CSR1_LSEDRV_1 /*!< LSE medium high drive capability */
#define RCC_LSEDRIVE_HIGH RCC_CSR1_LSEDRV /*!< LSE high drive capability */
/**
* @}
*/
/**
* @}
*/
/* Exported macros -----------------------------------------------------------*/
/** @defgroup RCC_Exported_Macros RCC Exported Macros
* @{
*/
/** @defgroup RCC_AHB_Peripheral_Clock_Enable_Disable AHB Peripheral Clock Enable Disable
* @brief Enable or disable the AHB peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_DMA1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_FLASH_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_CRC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_DMA1_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN)
#define __HAL_RCC_FLASH_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN)
#define __HAL_RCC_CRC_CLK_DISABLE() CLEAR_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN)
/**
* @}
*/
/** @defgroup RCC_IOPORT_Clock_Enable_Disable IOPORT Clock Enable Disable
* @brief Enable or disable the IO Ports clock.
* @note After reset, the IO ports clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_GPIOA_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_GPIOB_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_GPIOC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN); \
UNUSED(tmpreg); \
} while(0U)
#if defined (GPIOD)
#define __HAL_RCC_GPIOD_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIODEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIODEN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* GPIOD */
#define __HAL_RCC_GPIOF_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_GPIOA_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN)
#define __HAL_RCC_GPIOB_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN)
#define __HAL_RCC_GPIOC_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN)
#if defined (GPIOD)
#define __HAL_RCC_GPIOD_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIODEN)
#endif /* GPIOD */
#define __HAL_RCC_GPIOF_CLK_DISABLE() CLEAR_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN)
/**
* @}
*/
/** @defgroup RCC_APB1_GRP1_Clock_Enable_Disable APB1_GRP1 Peripheral Clock Enable Disable
* @brief Enable or disable the APB1 peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#if defined(TIM2)
#define __HAL_RCC_TIM2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_TIM2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM2EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_RTCAPB_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_WWDG_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN); \
UNUSED(tmpreg); \
} while(0U)
#if defined (USB_DRD_FS)
#define __HAL_RCC_USB_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_USBEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_USBEN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* USB_DRD_FS */
#if defined (FDCAN1)
#define __HAL_RCC_FDCAN1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_FDCAN1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_FDCAN1EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* FDCAN1 */
#if defined(SPI2)
#define __HAL_RCC_SPI2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* SPI2 */
#if defined(CRS)
#define __HAL_RCC_CRS_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_CRSEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_CRSEN); \
UNUSED(tmpreg); \
} while(0)
#endif /* CRS */
#define __HAL_RCC_USART2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(USART3)
#define __HAL_RCC_USART3_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_USART3EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_USART3EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* USART3 */
#if defined(USART4)
#define __HAL_RCC_USART4_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_USART4EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_USART4EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* USART4 */
#define __HAL_RCC_I2C1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_I2C1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_I2C1EN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(I2C2)
#define __HAL_RCC_I2C2_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_I2C2EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_I2C2EN); \
UNUSED(tmpreg); \
} while(0)
#endif /* I2C2 */
#define __HAL_RCC_DBGMCU_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_PWR_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR1, RCC_APBENR1_PWREN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR1, RCC_APBENR1_PWREN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(TIM2)
#define __HAL_RCC_TIM2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_TIM2EN)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN)
#define __HAL_RCC_RTCAPB_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN)
#define __HAL_RCC_WWDG_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN)
#if defined (USB_DRD_FS)
#define __HAL_RCC_USB_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_USBEN)
#endif /* USB_DRD_FS */
#if defined (FDCAN1)
#define __HAL_RCC_FDCAN1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_FDCAN1EN)
#endif /* FDCAN1 */
#if defined(SPI2)
#define __HAL_RCC_SPI2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN)
#endif /* SPI2 */
#if defined(CRS)
#define __HAL_RCC_CRS_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_CRSEN)
#endif /* CRS */
#define __HAL_RCC_USART2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN)
#if defined(USART3)
#define __HAL_RCC_USART3_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_USART3EN)
#endif /* USART3 */
#if defined(USART4)
#define __HAL_RCC_USART4_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_USART4EN)
#endif /* USART4 */
#define __HAL_RCC_I2C1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_I2C1EN)
#if defined(I2C2)
#define __HAL_RCC_I2C2_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_I2C2EN)
#endif /* I2C2 */
#define __HAL_RCC_DBGMCU_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN)
#define __HAL_RCC_PWR_CLK_DISABLE() CLEAR_BIT(RCC->APBENR1, RCC_APBENR1_PWREN)
/**
* @}
*/
/** @defgroup RCC_APB1_GRP2_Clock_Enable_Disable APB1_GRP2 Peripheral Clock Enable Disable
* @brief Enable or disable the APB1_GRP2 peripheral clock.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_SYSCFG_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_TIM1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_SPI1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_USART1_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_TIM14_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN); \
UNUSED(tmpreg); \
} while(0U)
#if defined(TIM15)
#define __HAL_RCC_TIM15_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM15EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM15EN); \
UNUSED(tmpreg); \
} while(0U)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_TIM17_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_ADC_CLK_ENABLE() do { \
__IO uint32_t tmpreg; \
SET_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN); \
/* Delay after an RCC peripheral clock enabling */ \
tmpreg = READ_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN); \
UNUSED(tmpreg); \
} while(0U)
#define __HAL_RCC_SYSCFG_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN)
#define __HAL_RCC_TIM1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN)
#define __HAL_RCC_SPI1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN)
#define __HAL_RCC_USART1_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN)
#define __HAL_RCC_TIM14_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN)
#if defined(TIM15)
#define __HAL_RCC_TIM15_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM15EN)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN)
#define __HAL_RCC_TIM17_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN)
#define __HAL_RCC_ADC_CLK_DISABLE() CLEAR_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN)
/**
* @}
*/
/** @defgroup RCC_AHB_Peripheral_Clock_Enabled_Disabled_Status AHB Peripheral Clock Enabled or Disabled Status
* @brief Check whether the AHB peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_DMA1_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN) != 0U)
#define __HAL_RCC_FLASH_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN) != 0U)
#define __HAL_RCC_CRC_IS_CLK_ENABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN) != 0U)
#define __HAL_RCC_DMA1_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_DMA1EN) == 0U)
#define __HAL_RCC_FLASH_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_FLASHEN) == 0U)
#define __HAL_RCC_CRC_IS_CLK_DISABLED() (READ_BIT(RCC->AHBENR, RCC_AHBENR_CRCEN) == 0U)
/**
* @}
*/
/** @defgroup RCC_IOPORT_Clock_Enabled_Disabled_Status IOPORT Clock Enabled or Disabled Status
* @brief Check whether the IO Port clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_GPIOA_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN) != 0U)
#define __HAL_RCC_GPIOB_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN) != 0U)
#define __HAL_RCC_GPIOC_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN) != 0U)
#if defined (GPIOD)
#define __HAL_RCC_GPIOD_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIODEN) != 0U)
#endif /* GPIOD */
#define __HAL_RCC_GPIOF_IS_CLK_ENABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN) != 0U)
#define __HAL_RCC_GPIOA_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOAEN) == 0U)
#define __HAL_RCC_GPIOB_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOBEN) == 0U)
#define __HAL_RCC_GPIOC_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOCEN) == 0U)
#if defined (GPIOD)
#define __HAL_RCC_GPIOD_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIODEN) == 0U)
#endif /* GPIOD */
#define __HAL_RCC_GPIOF_IS_CLK_DISABLED() (READ_BIT(RCC->IOPENR, RCC_IOPENR_GPIOFEN) == 0U)
/**
* @}
*/
/** @defgroup RCC_APB1_GRP1_Clock_Enabled_Disabled_Status APB1_GRP1 Peripheral Clock Enabled or Disabled Status
* @brief Check whether the APB1_GRP1 peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#if defined(TIM2)
#define __HAL_RCC_TIM2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM2EN) != 0U)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN) != 0U)
#define __HAL_RCC_RTCAPB_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN) != 0U)
#define __HAL_RCC_WWDG_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN) != 0U)
#if defined (USB_DRD_FS)
#define __HAL_RCC_USB_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USBEN) != 0U)
#endif /* USB_DRD_FS */
#if defined (FDCAN1)
#define __HAL_RCC_FDCAN1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_FDCAN1EN) != 0U)
#endif /* FDCAN1 */
#if defined(SPI2)
#define __HAL_RCC_SPI2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN) != 0U)
#endif /* SPI2 */
#if defined(CRS)
#define __HAL_RCC_CRS_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_CRSEN) != 0U)
#endif /* CRS */
#define __HAL_RCC_USART2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN) != 0U)
#if defined(USART3)
#define __HAL_RCC_USART3_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART3EN) != 0U)
#endif /* USART3 */
#if defined(USART4)
#define __HAL_RCC_USART4_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART4EN) != 0U)
#endif /* USART4 */
#define __HAL_RCC_I2C1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2C1EN) != 0U)
#if defined(I2C2)
#define __HAL_RCC_I2C2_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2C2EN) != 0U)
#endif /* I2C2 */
#define __HAL_RCC_DBGMCU_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN) != 0U)
#define __HAL_RCC_PWR_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_PWREN) != 0U)
#if defined(TIM2)
#define __HAL_RCC_TIM2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM2EN) == 0U)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_TIM3EN) == 0U)
#define __HAL_RCC_RTCAPB_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_RTCAPBEN) == 0U)
#define __HAL_RCC_WWDG_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_WWDGEN) == 0U)
#if defined (USB_DRD_FS)
#define __HAL_RCC_USB_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USBEN) == 0U)
#endif /* USB_DRD_FS */
#if defined (FDCAN1)
#define __HAL_RCC_FDCAN1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_FDCAN1EN) == 0U)
#endif /* FDCAN1 */
#if defined(SPI2)
#define __HAL_RCC_SPI2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_SPI2EN) == 0U)
#endif /* SPI2 */
#if defined(CRS)
#define __HAL_RCC_CRS_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_CRSEN) == 0U)
#endif /* CRS */
#define __HAL_RCC_USART2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART2EN) == 0U)
#if defined(USART3)
#define __HAL_RCC_USART3_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART3EN) == 0U)
#endif /* USART3 */
#if defined(USART4)
#define __HAL_RCC_USART4_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_USART4EN) == 0U)
#endif /* USART4 */
#define __HAL_RCC_I2C1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2C1EN) == 0U)
#if defined(I2C2)
#define __HAL_RCC_I2C2_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_I2C2EN) == 0U)
#endif /* I2C2 */
#define __HAL_RCC_DBGMCU_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_DBGEN) == 0U)
#define __HAL_RCC_PWR_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR1, RCC_APBENR1_PWREN) == 0U)
/**
* @}
*/
/** @defgroup RCC_APB1_GRP2_Clock_Enabled_Disabled_Status APB1_GRP2 Peripheral Clock Enabled or Disabled Status
* @brief Check whether the APB1_GRP2 peripheral clock is enabled or not.
* @note After reset, the peripheral clock (used for registers read/write access)
* is disabled and the application software has to enable this clock before
* using it.
* @{
*/
#define __HAL_RCC_SYSCFG_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN) != 0U)
#define __HAL_RCC_TIM1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN) != 0U)
#define __HAL_RCC_SPI1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN) != 0U)
#define __HAL_RCC_USART1_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN) != 0U)
#define __HAL_RCC_TIM14_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN) != 0U)
#if defined(TIM15)
#define __HAL_RCC_TIM15_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM15EN) != 0U)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN) != 0U)
#define __HAL_RCC_TIM17_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN) != 0U)
#define __HAL_RCC_ADC_IS_CLK_ENABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN) != 0U)
#define __HAL_RCC_SYSCFG_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SYSCFGEN) == 0U)
#define __HAL_RCC_TIM1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM1EN) == 0U)
#define __HAL_RCC_SPI1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_SPI1EN) == 0U)
#define __HAL_RCC_USART1_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_USART1EN) == 0U)
#define __HAL_RCC_TIM14_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM14EN) == 0U)
#if defined(TIM15)
#define __HAL_RCC_TIM15_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM15EN) == 0U)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM16EN) == 0U)
#define __HAL_RCC_TIM17_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_TIM17EN) == 0U)
#define __HAL_RCC_ADC_IS_CLK_DISABLED() (READ_BIT(RCC->APBENR2, RCC_APBENR2_ADCEN) == 0U)
/**
* @}
*/
/** @defgroup RCC_AHB_Force_Release_Reset AHB Peripheral Force Release Reset
* @brief Force or release AHB1 peripheral reset.
* @{
*/
#define __HAL_RCC_AHB_FORCE_RESET() WRITE_REG(RCC->AHBRSTR, 0xFFFFFFFFU)
#define __HAL_RCC_DMA1_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_DMA1RST)
#define __HAL_RCC_FLASH_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_FLASHRST)
#define __HAL_RCC_CRC_FORCE_RESET() SET_BIT(RCC->AHBRSTR, RCC_AHBRSTR_CRCRST)
#define __HAL_RCC_AHB_RELEASE_RESET() WRITE_REG(RCC->AHBRSTR, 0x00000000U)
#define __HAL_RCC_DMA1_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_DMA1RST)
#define __HAL_RCC_FLASH_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_FLASHRST)
#define __HAL_RCC_CRC_RELEASE_RESET() CLEAR_BIT(RCC->AHBRSTR, RCC_AHBRSTR_CRCRST)
/**
* @}
*/
/** @defgroup RCC_IOPORT_Force_Release_Reset IOPORT Force Release Reset
* @brief Force or release IO Port reset.
* @{
*/
#define __HAL_RCC_IOP_FORCE_RESET() WRITE_REG(RCC->IOPRSTR, 0xFFFFFFFFU)
#define __HAL_RCC_GPIOA_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOARST)
#define __HAL_RCC_GPIOB_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOBRST)
#define __HAL_RCC_GPIOC_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOCRST)
#if defined (GPIOD)
#define __HAL_RCC_GPIOD_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIODRST)
#endif /* GPIOD */
#define __HAL_RCC_GPIOF_FORCE_RESET() SET_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOFRST)
#define __HAL_RCC_IOP_RELEASE_RESET() WRITE_REG(RCC->IOPRSTR, 0x00000000U)
#define __HAL_RCC_GPIOA_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOARST)
#define __HAL_RCC_GPIOB_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOBRST)
#define __HAL_RCC_GPIOC_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOCRST)
#if defined (GPIOD)
#define __HAL_RCC_GPIOD_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIODRST)
#endif /* GPIOD */
#define __HAL_RCC_GPIOF_RELEASE_RESET() CLEAR_BIT(RCC->IOPRSTR, RCC_IOPRSTR_GPIOFRST)
/**
* @}
*/
/** @defgroup RCC_APB1_GRP1_Force_Release_Reset APB1_GRP1 Peripheral Force Release Reset
* @brief Force or release APB1_GRP1 peripheral reset.
* @{
*/
#define __HAL_RCC_APB1_GRP1_FORCE_RESET() WRITE_REG(RCC->APBRSTR1, 0xFFFFFFFFU)
#if defined(TIM2)
#define __HAL_RCC_TIM2_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM2RST)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM3RST)
#if defined (USB_DRD_FS)
#define __HAL_RCC_USB_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USBRST)
#endif /* USB_DRD_FS */
#if defined (FDCAN1)
#define __HAL_RCC_FDCAN1_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_FDCAN1RST)
#endif /* FDACN1 */
#if defined(SPI2)
#define __HAL_RCC_SPI2_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_SPI2RST)
#endif /* SPI2 */
#if defined(CRS)
#define __HAL_RCC_CRS_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_CRSRST)
#endif /* CRS */
#define __HAL_RCC_USART2_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART2RST)
#if defined(USART3)
#define __HAL_RCC_USART3_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART3RST)
#endif /* USART3 */
#if defined(USART4)
#define __HAL_RCC_USART4_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART4RST)
#endif /* USART4 */
#define __HAL_RCC_I2C1_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2C1RST)
#if defined(I2C2)
#define __HAL_RCC_I2C2_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2C2RST)
#endif /* I2C2 */
#define __HAL_RCC_DBGMCU_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_DBGRST)
#define __HAL_RCC_PWR_FORCE_RESET() SET_BIT(RCC->APBRSTR1, RCC_APBRSTR1_PWRRST)
#define __HAL_RCC_APB1_GRP1_RELEASE_RESET() WRITE_REG(RCC->APBRSTR1, 0x00000000U)
#if defined(TIM2)
#define __HAL_RCC_TIM2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM2RST)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_TIM3RST)
#if defined (USB_DRD_FS)
#define __HAL_RCC_USB_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USBRST)
#endif /* USB_DRD_FS */
#if defined (FDCAN1)
#define __HAL_RCC_FDCAN1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_FDCAN1RST)
#endif /* FDACN1 */
#if defined(SPI2)
#define __HAL_RCC_SPI2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_SPI2RST)
#endif /* SPI2 */
#if defined(CRS)
#define __HAL_RCC_CRS_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_CRSRST)
#endif /* CRS */
#define __HAL_RCC_USART2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART2RST)
#if defined(USART3)
#define __HAL_RCC_USART3_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART3RST)
#endif /* USART3 */
#if defined(USART4)
#define __HAL_RCC_USART4_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_USART4RST)
#endif /* USART4 */
#define __HAL_RCC_I2C1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2C1RST)
#if defined(I2C2)
#define __HAL_RCC_I2C2_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_I2C2RST)
#endif /* I2C2 */
#define __HAL_RCC_DBGMCU_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_DBGRST)
#define __HAL_RCC_PWR_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR1, RCC_APBRSTR1_PWRRST)
/**
* @}
*/
/** @defgroup RCC_APB1_GRP2_Force_Release_Reset APB1_GRP2 Peripheral Force Release Reset
* @brief Force or release APB1_GRP2 peripheral reset.
* @{
*/
#define __HAL_RCC_APB1_GRP2_FORCE_RESET() WRITE_REG(RCC->APBRSTR2, 0xFFFFFFFFU)
#define __HAL_RCC_SYSCFG_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SYSCFGRST)
#define __HAL_RCC_TIM1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM1RST)
#define __HAL_RCC_SPI1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SPI1RST)
#define __HAL_RCC_USART1_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_USART1RST)
#define __HAL_RCC_TIM14_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM14RST)
#if defined(TIM15)
#define __HAL_RCC_TIM15_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM15RST)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM16RST)
#define __HAL_RCC_TIM17_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM17RST)
#define __HAL_RCC_ADC_FORCE_RESET() SET_BIT(RCC->APBRSTR2, RCC_APBRSTR2_ADCRST)
#define __HAL_RCC_APB1_GRP2_RELEASE_RESET() WRITE_REG(RCC->APBRSTR2, 0x00000000U)
#define __HAL_RCC_SYSCFG_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SYSCFGRST)
#define __HAL_RCC_TIM1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM1RST)
#define __HAL_RCC_SPI1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_SPI1RST)
#define __HAL_RCC_USART1_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_USART1RST)
#define __HAL_RCC_TIM14_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM14RST)
#if defined(TIM15)
#define __HAL_RCC_TIM15_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM15RST)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM16RST)
#define __HAL_RCC_TIM17_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_TIM17RST)
#define __HAL_RCC_ADC_RELEASE_RESET() CLEAR_BIT(RCC->APBRSTR2, RCC_APBRSTR2_ADCRST)
/**
* @}
*/
/** @defgroup RCC_AHB_Clock_Sleep_Enable_Disable AHB Peripherals Clock Sleep Enable Disable
* @brief Enable or disable the AHB peripherals clock during Low Power (Sleep) mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_DMA1_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHBSMENR, RCC_AHBSMENR_DMA1SMEN)
#define __HAL_RCC_FLASH_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHBSMENR, RCC_AHBSMENR_FLASHSMEN)
#define __HAL_RCC_SRAM_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHBSMENR, RCC_AHBSMENR_SRAMSMEN)
#define __HAL_RCC_CRC_CLK_SLEEP_ENABLE() SET_BIT(RCC->AHBSMENR, RCC_AHBSMENR_CRCSMEN)
#define __HAL_RCC_DMA1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHBSMENR, RCC_AHBSMENR_DMA1SMEN)
#define __HAL_RCC_FLASH_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHBSMENR, RCC_AHBSMENR_FLASHSMEN)
#define __HAL_RCC_SRAM_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHBSMENR, RCC_AHBSMENR_SRAMSMEN)
#define __HAL_RCC_CRC_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->AHBSMENR, RCC_AHBSMENR_CRCSMEN)
/**
* @}
*/
/** @defgroup RCC_IOPORT_Clock_Sleep_Enable_Disable IOPORT Clock Sleep Enable Disable
* @brief Enable or disable the IOPORT clock during Low Power (Sleep) mode.
* @note IOPORT clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_GPIOA_CLK_SLEEP_ENABLE() SET_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOASMEN)
#define __HAL_RCC_GPIOB_CLK_SLEEP_ENABLE() SET_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOBSMEN)
#define __HAL_RCC_GPIOC_CLK_SLEEP_ENABLE() SET_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOCSMEN)
#if defined (GPIOD)
#define __HAL_RCC_GPIOD_CLK_SLEEP_ENABLE() SET_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIODSMEN)
#endif /* GPIOD */
#define __HAL_RCC_GPIOF_CLK_SLEEP_ENABLE() SET_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOFSMEN)
#define __HAL_RCC_GPIOA_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOASMEN)
#define __HAL_RCC_GPIOB_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOBSMEN)
#define __HAL_RCC_GPIOC_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOCSMEN)
#if defined (GPIOD)
#define __HAL_RCC_GPIOD_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIODSMEN)
#endif /* GPIOD */
#define __HAL_RCC_GPIOF_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOFSMEN)
/**
* @}
*/
/** @defgroup RCC_APB1_GRP1_Clock_Sleep_Enable_Disable APB1_GRP1 Peripheral Clock Sleep Enable Disable
* @brief Enable or disable the APB1_GRP1 peripheral clock during Low Power (Sleep) mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#if defined(TIM2)
#define __HAL_RCC_TIM2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM2SMEN)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM3SMEN)
#define __HAL_RCC_RTCAPB_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_RTCAPBSMEN)
#define __HAL_RCC_WWDG_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_WWDGSMEN)
#if defined (USB_DRD_FS)
#define __HAL_RCC_USB_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USBSMEN)
#endif /* USB_DRD_FS */
#if defined (FDCAN1)
#define __HAL_RCC_FDCAN1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_FDCAN1SMEN)
#endif /* FDCAN1 */
#if defined(SPI2)
#define __HAL_RCC_SPI2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_SPI2SMEN)
#endif /* SPI2 */
#if defined(CRS)
#define __HAL_RCC_CRS_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_CRSSMEN)
#endif /* CRS */
#define __HAL_RCC_USART2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART2SMEN)
#if defined(USART3)
#define __HAL_RCC_USART3_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART3SMEN)
#endif /* USART3 */
#if defined(USART4)
#define __HAL_RCC_USART4_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART4SMEN)
#endif /* USART4 */
#define __HAL_RCC_I2C1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C1SMEN)
#if defined(I2C2)
#define __HAL_RCC_I2C2_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C2SMEN)
#endif /* I2C2 */
#define __HAL_RCC_DBGMCU_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_DBGSMEN)
#define __HAL_RCC_PWR_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR1, RCC_APBSMENR1_PWRSMEN)
#if defined(TIM2)
#define __HAL_RCC_TIM2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM2SMEN)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM3SMEN)
#define __HAL_RCC_RTCAPB_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_RTCAPBSMEN)
#define __HAL_RCC_WWDG_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_WWDGSMEN)
#if defined (FDCAN1)
#define __HAL_RCC_FDCAN1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_FDCAN1SMEN)
#endif /* FDCAN1 */
#if defined (USB_DRD_FS)
#define __HAL_RCC_USB_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USBSMEN)
#endif /* USB_DRD_FS */
#if defined(SPI2)
#define __HAL_RCC_SPI2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_SPI2SMEN)
#endif /* SPI2 */
#if defined(CRS)
#define __HAL_RCC_CRS_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_CRSSMEN)
#endif /* CRS */
#define __HAL_RCC_USART2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART2SMEN)
#if defined(USART3)
#define __HAL_RCC_USART3_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART3SMEN)
#endif /* USART3 */
#if defined(USART4)
#define __HAL_RCC_USART4_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART4SMEN)
#endif /* USART4 */
#define __HAL_RCC_I2C1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C1SMEN)
#if defined(I2C2)
#define __HAL_RCC_I2C2_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C2SMEN)
#endif /* I2C2 */
#define __HAL_RCC_DBGMCU_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_DBGSMEN)
#define __HAL_RCC_PWR_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR1, RCC_APBSMENR1_PWRSMEN)
/**
* @}
*/
/** @defgroup RCC_APB1_GRP2_Clock_Sleep_Enable_Disable APB1_GRP2 Peripheral Clock Sleep Enable Disable
* @brief Enable or disable the APB1_GRP2 peripheral clock during Low Power (Sleep) mode.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_SYSCFG_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SYSCFGSMEN)
#define __HAL_RCC_TIM1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM1SMEN)
#define __HAL_RCC_SPI1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SPI1SMEN)
#define __HAL_RCC_USART1_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_USART1SMEN)
#define __HAL_RCC_TIM14_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM14SMEN)
#if defined(TIM15)
#define __HAL_RCC_TIM15_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM15SMEN)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM16SMEN)
#define __HAL_RCC_TIM17_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM17SMEN)
#define __HAL_RCC_ADC_CLK_SLEEP_ENABLE() SET_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_ADCSMEN)
#define __HAL_RCC_SYSCFG_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SYSCFGSMEN)
#define __HAL_RCC_TIM1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM1SMEN)
#define __HAL_RCC_SPI1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SPI1SMEN)
#define __HAL_RCC_USART1_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_USART1SMEN)
#define __HAL_RCC_TIM14_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM14SMEN)
#if defined(TIM15)
#define __HAL_RCC_TIM15_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM15SMEN)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM16SMEN)
#define __HAL_RCC_TIM17_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM17SMEN)
#define __HAL_RCC_ADC_CLK_SLEEP_DISABLE() CLEAR_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_ADCSMEN)
/**
* @}
*/
/** @defgroup RCC_AHB_Clock_Sleep_Enabled_Disabled_Status AHB Peripheral Clock Sleep Enabled or Disabled Status
* @brief Check whether the AHB peripheral clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_DMA1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_DMA1SMEN) != RESET)
#define __HAL_RCC_FLASH_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_FLASHSMEN)!= RESET)
#define __HAL_RCC_SRAM_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_SRAMSMEN) != RESET)
#define __HAL_RCC_CRC_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_CRCSMEN) != RESET)
#define __HAL_RCC_DMA1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_DMA1SMEN) == RESET)
#define __HAL_RCC_FLASH_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_FLASHSMEN) == RESET)
#define __HAL_RCC_SRAM_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_SRAMSMEN) == RESET)
#define __HAL_RCC_CRC_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->AHBSMENR, RCC_AHBSMENR_CRCSMEN) == RESET)
/**
* @}
*/
/** @defgroup RCC_IOPORT_Clock_Sleep_Enabled_Disabled_Status IOPORT Clock Sleep Enabled or Disabled Status
* @brief Check whether the IOPORT clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_GPIOA_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOASMEN)!= RESET)
#define __HAL_RCC_GPIOB_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOBSMEN)!= RESET)
#define __HAL_RCC_GPIOC_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOCSMEN)!= RESET)
#if defined (GPIOD)
#define __HAL_RCC_GPIOD_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIODSMEN)!= RESET)
#endif /* GPIOD */
#define __HAL_RCC_GPIOF_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOFSMEN)!= RESET)
#define __HAL_RCC_GPIOA_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOASMEN) == RESET)
#define __HAL_RCC_GPIOB_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOBSMEN) == RESET)
#define __HAL_RCC_GPIOC_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOCSMEN) == RESET)
#if defined (GPIOD)
#define __HAL_RCC_GPIOD_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIODSMEN) == RESET)
#endif /* GPIOD */
#define __HAL_RCC_GPIOF_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->IOPSMENR, RCC_IOPSMENR_GPIOFSMEN) == RESET)
/**
* @}
*/
/** @defgroup RCC_APB1_GRP1_Clock_Sleep_Enabled_Disabled_Status APB1_GRP1 Peripheral Clock Sleep Enabled or
* Disabled Status
* @brief Check whether the APB1_GRP1 peripheral clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#if defined(TIM2)
#define __HAL_RCC_TIM2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM2SMEN) != RESET)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM3SMEN) != RESET)
#define __HAL_RCC_RTCAPB_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_RTCAPBSMEN) != RESET)
#define __HAL_RCC_WWDG_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_WWDGSMEN) != RESET)
#if defined (USB_DRD_FS)
#define __HAL_RCC_USB_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USBSMEN) != RESET)
#endif /* USB_DRD_FS */
#if defined (FDCAN1)
#define __HAL_RCC_FDCAN1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_FDCAN1SMEN) != RESET)
#endif /* FDCAN1 */
#if defined(SPI2)
#define __HAL_RCC_SPI2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_SPI2SMEN) != RESET)
#endif /* SPI2 */
#if defined(CRS)
#define __HAL_RCC_CRS_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_CRSSMEN) != RESET)
#endif /* CRS */
#define __HAL_RCC_USART2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART2SMEN) != RESET)
#if defined(USART3)
#define __HAL_RCC_USART3_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART3SMEN) != RESET)
#endif /* USART3 */
#if defined(USART4)
#define __HAL_RCC_USART4_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART4SMEN) != RESET)
#endif /* USART4 */
#define __HAL_RCC_I2C1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C1SMEN) != RESET)
#if defined(I2C2)
#define __HAL_RCC_I2C2_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C2SMEN) != RESET)
#endif /* I2C2 */
#define __HAL_RCC_DBGMCU_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_DBGSMEN) != RESET)
#define __HAL_RCC_PWR_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_PWRSMEN) != RESET)
#if defined(TIM2)
#define __HAL_RCC_TIM2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM2SMEN) == RESET)
#endif /* TIM2 */
#define __HAL_RCC_TIM3_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_TIM3SMEN) == RESET)
#define __HAL_RCC_RTCAPB_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_RTCAPBSMEN) == RESET)
#define __HAL_RCC_WWDG_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_WWDGSMEN) == RESET)
#if defined (USB_DRD_FS)
#define __HAL_RCC_USB_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USBSMEN) == RESET)
#endif /* USB_DRD_FS */
#if defined (FDCAN1)
#define __HAL_RCC_FDCAN1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_FDCAN1SMEN) == RESET)
#endif /* FDCAN1 */
#if defined(SPI2)
#define __HAL_RCC_SPI2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_SPI2SMEN) == RESET)
#endif /* SPI2 */
#if defined(CRS)
#define __HAL_RCC_CRS_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_CRSSMEN) == RESET)
#endif /* CRS */
#define __HAL_RCC_USART2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART2SMEN) == RESET)
#if defined(USART3)
#define __HAL_RCC_USART3_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART3SMEN) == RESET)
#endif /* USART3 */
#if defined(USART4)
#define __HAL_RCC_USART4_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_USART4SMEN) == RESET)
#endif /* USART4 */
#define __HAL_RCC_I2C1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C1SMEN) == RESET)
#if defined(I2C2)
#define __HAL_RCC_I2C2_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_I2C2SMEN) == RESET)
#endif /* I2C2 */
#define __HAL_RCC_DBGMCU_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_DBGSMEN) == RESET)
#define __HAL_RCC_PWR_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR1, RCC_APBSMENR1_PWRSMEN) == RESET)
/**
* @}
*/
/** @defgroup RCC_APB1_GRP2_Clock_Sleep_Enabled_Disabled_Status APB1_GRP2 Peripheral Clock Sleep Enabled or
* Disabled Status
* @brief Check whether the APB1_GRP2 peripheral clock during Low Power (Sleep) mode is enabled or not.
* @note Peripheral clock gating in SLEEP mode can be used to further reduce
* power consumption.
* @note After wakeup from SLEEP mode, the peripheral clock is enabled again.
* @note By default, all peripheral clocks are enabled during SLEEP mode.
* @{
*/
#define __HAL_RCC_SYSCFG_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SYSCFGSMEN) != RESET)
#define __HAL_RCC_TIM1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM1SMEN) != RESET)
#define __HAL_RCC_SPI1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SPI1SMEN) != RESET)
#define __HAL_RCC_USART1_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_USART1SMEN) != RESET)
#define __HAL_RCC_TIM14_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM14SMEN) != RESET)
#if defined(TIM15)
#define __HAL_RCC_TIM15_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM15SMEN) != RESET)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM16SMEN) != RESET)
#define __HAL_RCC_TIM17_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM17SMEN) != RESET)
#define __HAL_RCC_ADC_IS_CLK_SLEEP_ENABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_ADCSMEN) != RESET)
#define __HAL_RCC_SYSCFG_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SYSCFGSMEN) == RESET)
#define __HAL_RCC_TIM1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM1SMEN) == RESET)
#define __HAL_RCC_SPI1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_SPI1SMEN) == RESET)
#define __HAL_RCC_USART1_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_USART1SMEN) == RESET)
#define __HAL_RCC_TIM14_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM14SMEN) == RESET)
#if defined(TIM15)
#define __HAL_RCC_TIM15_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM15SMEN) == RESET)
#endif /* TIM15 */
#define __HAL_RCC_TIM16_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM16SMEN) == RESET)
#define __HAL_RCC_TIM17_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_TIM17SMEN) == RESET)
#define __HAL_RCC_ADC_IS_CLK_SLEEP_DISABLED() (READ_BIT(RCC->APBSMENR2 , RCC_APBSMENR2_ADCSMEN) == RESET)
/**
* @}
*/
/** @defgroup RCC_RTC_Domain_Reset RCC RTC Domain Reset
* @{
*/
/** @brief Macros to force or release the RTC domain reset.
* @note This function resets the RTC peripheral
* and the RTC clock source selection in RCC_CSR1 register.
* @retval None
*/
#define __HAL_RCC_BACKUPRESET_FORCE() SET_BIT(RCC->CSR1, RCC_CSR1_RTCRST)
#define __HAL_RCC_BACKUPRESET_RELEASE() CLEAR_BIT(RCC->CSR1, RCC_CSR1_RTCRST)
/**
* @}
*/
/** @defgroup RCC_RTC_Clock_Configuration RCC RTC Clock Configuration
* @{
*/
/** @brief Macros to enable or disable the RTC clock.
* @note These macros must be used after the RTC clock source was selected.
* @retval None
*/
#define __HAL_RCC_RTC_ENABLE() SET_BIT(RCC->CSR1, RCC_CSR1_RTCEN)
#define __HAL_RCC_RTC_DISABLE() CLEAR_BIT(RCC->CSR1, RCC_CSR1_RTCEN)
/**
* @}
*/
/** @defgroup RCC_Clock_Configuration RCC Clock Configuration
* @{
*/
/** @brief Macros to enable the Internal High Speed oscillator (HSI).
* @note The HSI is stopped by hardware when entering STOP and STANDBY modes.
* It is used (enabled by hardware) as system clock source after startup
* from Reset, wakeup from STOP and STANDBY mode, or in case of failure
* of the HSE used directly or indirectly as system clock (if the Clock
* Security System CSS is enabled).
* @note After enabling the HSI, the application software should wait on HSIRDY
* flag to be set indicating that HSI clock is stable and can be used as
* system clock source.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
#define __HAL_RCC_HSI_ENABLE() SET_BIT(RCC->CR, RCC_CR_HSION)
/** @brief Macros to disable the Internal High Speed oscillator (HSI).
* @note HSI can not be stopped if it is used as system clock source. In this case,
* you have to select another source of the system clock then stop the HSI.
* @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
* clock cycles.
* @retval None
*/
#define __HAL_RCC_HSI_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSION)
/** @brief Macro to adjust the Internal High Speed oscillator (HSI) calibration value.
* @note The calibration is used to compensate for the variations in voltage
* and temperature that influence the frequency of the internal HSI RC.
* @param __HSICALIBRATIONVALUE__ specifies the calibration trimming value
* (default is RCC_HSICALIBRATION_DEFAULT).
* This parameter must be a number between 0 and 127.
* @retval None
*/
#define __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(__HSICALIBRATIONVALUE__) \
MODIFY_REG(RCC->ICSCR, RCC_ICSCR_HSITRIM, (uint32_t)(__HSICALIBRATIONVALUE__) << RCC_ICSCR_HSITRIM_Pos)
/**
* @brief Macros to enable or disable the force of the Internal High Speed oscillator (HSI)
* in STOP mode to be quickly available as kernel clock for USARTs and I2Cs.
* @note Keeping the HSI ON in STOP mode allows to avoid slowing down the communication
* speed because of the HSI startup time.
* @note The enable of this function has not effect on the HSION bit.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
#define __HAL_RCC_HSISTOP_ENABLE() SET_BIT(RCC->CR, RCC_CR_HSIKERON)
#define __HAL_RCC_HSISTOP_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSIKERON)
/** @brief Macro to configure the HSISYS clock.
* @param __HSIDIV__ specifies the HSI16 division factor.
* This parameter can be one of the following values:
* @arg @ref RCC_HSI_DIV1 HSI clock source is divided by 1
* @arg @ref RCC_HSI_DIV2 HSI clock source is divided by 2
* @arg @ref RCC_HSI_DIV4 HSI clock source is divided by 4
* @arg @ref RCC_HSI_DIV8 HSI clock source is divided by 8
* @arg @ref RCC_HSI_DIV16 HSI clock source is divided by 16
* @arg @ref RCC_HSI_DIV32 HSI clock source is divided by 32
* @arg @ref RCC_HSI_DIV64 HSI clock source is divided by 64
* @arg @ref RCC_HSI_DIV128 HSI clock source is divided by 128
*/
#define __HAL_RCC_HSI_CONFIG(__HSIDIV__) \
MODIFY_REG(RCC->CR, RCC_CR_HSIDIV, (__HSIDIV__))
/** @brief Macro to get the HSI divider.
* @retval The HSI divider. The returned value can be one
* of the following:
* - RCC_CR_HSIDIV_1 HSI oscillator divided by 1
* - RCC_CR_HSIDIV_2 HSI oscillator divided by 2
* - RCC_CR_HSIDIV_4 HSI oscillator divided by 4 (default after reset)
* - RCC_CR_HSIDIV_8 HSI oscillator divided by 8
* - RCC_CR_HSIDIV_16 HSI oscillator divided by 16
* - RCC_CR_HSIDIV_32 HSI oscillator divided by 32
* - RCC_CR_HSIDIV_64 HSI oscillator divided by 64
* - RCC_CR_HSIDIV_128 HSI oscillator divided by 128
*/
#define __HAL_RCC_GET_HSI_DIVIDER() ((uint32_t)(READ_BIT(RCC->CR, RCC_CR_HSIDIV)))
/** @brief Macros to enable or disable the Internal Low Speed oscillator (LSI).
* @note After enabling the LSI, the application software should wait on
* LSIRDY flag to be set indicating that LSI clock is stable and can
* be used to clock the IWDG and/or the RTC.
* @note LSI can not be disabled if the IWDG is running.
* @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
* clock cycles.
* @retval None
*/
#define __HAL_RCC_LSI_ENABLE() SET_BIT(RCC->CSR2, RCC_CSR2_LSION)
#define __HAL_RCC_LSI_DISABLE() CLEAR_BIT(RCC->CSR2, RCC_CSR2_LSION)
/**
* @brief Macro to configure the External High Speed oscillator (HSE).
* @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
* supported by this macro. User should request a transition to HSE Off
* first and then HSE On or HSE Bypass.
* @note After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
* software should wait on HSERDY flag to be set indicating that HSE clock
* is stable and can be used to clock the PLL and/or system clock.
* @note HSE state can not be changed if it is used directly or through the
* PLL as system clock. In this case, you have to select another source
* of the system clock then change the HSE state (ex. disable it).
* @note The HSE is stopped by hardware when entering STOP and STANDBY modes.
* @note This function reset the CSSON bit, so if the clock security system(CSS)
* was previously enabled you have to enable it again after calling this
* function.
* @param __STATE__ specifies the new state of the HSE.
* This parameter can be one of the following values:
* @arg @ref RCC_HSE_OFF Turn OFF the HSE oscillator, HSERDY flag goes low after
* 6 HSE oscillator clock cycles.
* @arg @ref RCC_HSE_ON Turn ON the HSE oscillator.
* @arg @ref RCC_HSE_BYPASS HSE oscillator bypassed with external clock.
* @retval None
*/
#define __HAL_RCC_HSE_CONFIG(__STATE__) \
do { \
if((__STATE__) == RCC_HSE_ON) \
{ \
SET_BIT(RCC->CR, RCC_CR_HSEON); \
} \
else if((__STATE__) == RCC_HSE_BYPASS) \
{ \
SET_BIT(RCC->CR, RCC_CR_HSEBYP); \
SET_BIT(RCC->CR, RCC_CR_HSEON); \
} \
else \
{ \
CLEAR_BIT(RCC->CR, RCC_CR_HSEON); \
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); \
} \
} while(0U)
/**
* @brief Macro to configure the External Low Speed oscillator (LSE).
* @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
* supported by this macro. User should request a transition to LSE Off
* first and then LSE On or LSE Bypass.
* @note After enabling the LSE (RCC_LSE_ON or RCC_LSE_BYPASS), the application
* software should wait on LSERDY flag to be set indicating that LSE clock
* is stable and can be used to clock the RTC.
* @param __STATE__ specifies the new state of the LSE.
* This parameter can be one of the following values:
* @arg @ref RCC_LSE_OFF Turn OFF the LSE oscillator, LSERDY flag goes low after
* 6 LSE oscillator clock cycles.
* @arg @ref RCC_LSE_ON Turn ON the LSE oscillator.
* @arg @ref RCC_LSE_BYPASS LSE oscillator bypassed with external clock.
* @retval None
*/
#define __HAL_RCC_LSE_CONFIG(__STATE__) \
do { \
if((__STATE__) == RCC_LSE_ON) \
{ \
SET_BIT(RCC->CSR1, RCC_CSR1_LSEON); \
} \
else if((__STATE__) == RCC_LSE_BYPASS) \
{ \
SET_BIT(RCC->CSR1, RCC_CSR1_LSEBYP); \
SET_BIT(RCC->CSR1, RCC_CSR1_LSEON); \
} \
else \
{ \
CLEAR_BIT(RCC->CSR1, RCC_CSR1_LSEON); \
CLEAR_BIT(RCC->CSR1, RCC_CSR1_LSEBYP); \
} \
} while(0U)
#if defined(RCC_CR_HSIUSB48ON)
/** @brief Macros to enable or disable the Internal High Speed 48MHz oscillator (HSI48).
* @note The HSI48 is stopped by hardware when entering STOP and STANDBY modes.
* @note After enabling the HSI48, the application software should wait on HSI48RDY
* flag to be set indicating that HSI48 clock is stable.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
#define __HAL_RCC_HSI48_ENABLE() SET_BIT(RCC->CR, RCC_CR_HSIUSB48ON)
#define __HAL_RCC_HSI48_DISABLE() CLEAR_BIT(RCC->CR, RCC_CR_HSIUSB48ON)
#endif /* RCC_CR_HSIUSB48ON */
/**
* @}
*/
/** @addtogroup RCC_RTC_Clock_Configuration
* @{
*/
/** @brief Macros to configure the RTC clock (RTCCLK).
* @note As the RTC clock configuration bits are in the RTC domain and write
* access is denied to this domain after reset, you have to enable write
* access using the Power RTC Access macro before to configure
* the RTC clock source (to be done once after reset).
* @note Once the RTC clock is configured it cannot be changed unless the
* RTC domain is reset using __HAL_RCC_BACKUPRESET_FORCE() macro, or by
* a Power On Reset (POR).
*
* @param __RTC_CLKSOURCE__ specifies the RTC clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_RTCCLKSOURCE_NONE No clock selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSE LSE selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSI LSI selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_HSE_DIV32 HSE clock divided by 32 selected
*
* @note If the LSE or LSI is used as RTC clock source, the RTC continues to
* work in STOP and STANDBY modes, and can be used as wakeup source.
* However, when the HSE clock is used as RTC clock source, the RTC
* cannot be used in STOP and STANDBY modes.
* @note The maximum input clock frequency for RTC is 1MHz (when using HSE as
* RTC clock source).
* @retval None
*/
#define __HAL_RCC_RTC_CONFIG(__RTC_CLKSOURCE__) \
MODIFY_REG( RCC->CSR1, RCC_CSR1_RTCSEL, (__RTC_CLKSOURCE__))
/** @brief Macro to get the RTC clock source.
* @retval The returned value can be one of the following:
* @arg @ref RCC_RTCCLKSOURCE_NONE No clock selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSE LSE selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_LSI LSI selected as RTC clock.
* @arg @ref RCC_RTCCLKSOURCE_HSE_DIV32 HSE clock divided by 32 selected
*/
#define __HAL_RCC_GET_RTC_SOURCE() ((uint32_t)(READ_BIT(RCC->CSR1, RCC_CSR1_RTCSEL)))
/**
* @}
*/
/** @addtogroup RCC_Clock_Configuration
* @{
*/
/**
* @brief Macro to configure the system clock source.
* @param __SYSCLKSOURCE__ specifies the system clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_SYSCLKSOURCE_HSI HSI oscillator is used as system clock source.
* @arg @ref RCC_SYSCLKSOURCE_HSE HSE oscillator is used as system clock source.
* @arg @ref RCC_SYSCLKSOURCE_HSIUSB48 HSIUSB48 oscillator is used as system clock source.(*)
* @arg @ref RCC_SYSCLKSOURCE_LSI LSI oscillator is used as system clock source.
* @arg @ref RCC_SYSCLKSOURCE_LSE LSE oscillator is used as system clock source.
* @note (*) peripheral not available on all devices
* @retval None
*/
#define __HAL_RCC_SYSCLK_CONFIG(__SYSCLKSOURCE__) \
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, (__SYSCLKSOURCE__))
/** @brief Macro to get the clock source used as system clock.
* @retval The clock source used as system clock. The returned value can be one
* of the following:
* @arg @ref RCC_SYSCLKSOURCE_STATUS_HSI HSI used as system clock.
* @arg @ref RCC_SYSCLKSOURCE_STATUS_HSE HSE used as system clock.
* @arg @ref RCC_SYSCLKSOURCE_STATUS_HSIUSB48 HSIUSB48 used as system clock.(*)
* @arg @ref RCC_SYSCLKSOURCE_STATUS_LSI LSI used as system clock source.
* @arg @ref RCC_SYSCLKSOURCE_STATUS_LSE LSE used as system clock source.
* @note (*) peripheral not available on all devices
*/
#define __HAL_RCC_GET_SYSCLK_SOURCE() (RCC->CFGR & RCC_CFGR_SWS)
/**
* @brief Macro to configure the External Low Speed oscillator (LSE) drive capability.
* @param __LSEDRIVE__ specifies the new state of the LSE drive capability.
* This parameter can be one of the following values:
* @arg @ref RCC_LSEDRIVE_LOW LSE oscillator low drive capability.
* @arg @ref RCC_LSEDRIVE_MEDIUMLOW LSE oscillator medium low drive capability.
* @arg @ref RCC_LSEDRIVE_MEDIUMHIGH LSE oscillator medium high drive capability.
* @arg @ref RCC_LSEDRIVE_HIGH LSE oscillator high drive capability.
* @retval None
*/
#define __HAL_RCC_LSEDRIVE_CONFIG(__LSEDRIVE__) \
MODIFY_REG(RCC->CSR1, RCC_CSR1_LSEDRV, (uint32_t)(__LSEDRIVE__))
/** @brief Macro to configure the MCO clock.
* @param __MCOCLKSOURCE__ specifies the MCO clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_MCO1SOURCE_NOCLOCK MCO output disabled
* @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_HSI HSI clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_HSE HSE clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_LSI LSI clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_LSE LSE clock selected as MCO source
* @arg @ref RCC_MCO1SOURCE_HSI48 HSI48 clock selected as MCO source for devices with HSI48 (*)
* @param __MCODIV__ specifies the MCO clock prescaler.
* This parameter can be one of the following values:
* @arg @ref RCC_MCODIV_1 MCO clock source is divided by 1
* @arg @ref RCC_MCODIV_2 MCO clock source is divided by 2
* @arg @ref RCC_MCODIV_4 MCO clock source is divided by 4
* @arg @ref RCC_MCODIV_8 MCO clock source is divided by 8
* @arg @ref RCC_MCODIV_16 MCO clock source is divided by 16
* @arg @ref RCC_MCODIV_32 MCO clock source is divided by 32
* @arg @ref RCC_MCODIV_64 MCO clock source is divided by 64
* @arg @ref RCC_MCODIV_128 MCO clock source is divided by 128
* @arg @ref RCC_MCODIV_256 MCO clock source is divided by 256 (*)
* @arg @ref RCC_MCODIV_512 MCO clock source is divided by 512 (*)
* @arg @ref RCC_MCODIV_1024 MCO clock source is divided by 1024 (*)
* @note (*) not available on all devices
* @retval None
*/
#define __HAL_RCC_MCO1_CONFIG(__MCOCLKSOURCE__, __MCODIV__) \
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), ((__MCOCLKSOURCE__) | (__MCODIV__)))
/** @brief Macro to configure the MCO clock.
* @param __MCOCLKSOURCE__ specifies the MCO clock source.
* This parameter can be one of the following values:
* @arg @ref RCC_MCO2SOURCE_NOCLOCK MCO output disabled
* @arg @ref RCC_MCO2SOURCE_SYSCLK System clock selected as MCO source
* @arg @ref RCC_MCO2SOURCE_HSI HSI clock selected as MCO source
* @arg @ref RCC_MCO2SOURCE_HSE HSE clock selected as MCO source
* @arg @ref RCC_MCO2SOURCE_LSI LSI clock selected as MCO source
* @arg @ref RCC_MCO2SOURCE_LSE LSE clock selected as MCO source
* @arg @ref RCC_MCO2SOURCE_HSI48 HSI48 clock selected as MCO2 source for devices with HSI48 (*)
* @param __MCODIV__ specifies the MCO clock prescaler.
* This parameter can be one of the following values:
* @arg @ref RCC_MCO2DIV_1 MCO clock source is divided by 1
* @arg @ref RCC_MCO2DIV_2 MCO clock source is divided by 2
* @arg @ref RCC_MCO2DIV_4 MCO clock source is divided by 4
* @arg @ref RCC_MCO2DIV_8 MCO clock source is divided by 8
* @arg @ref RCC_MCO2DIV_16 MCO clock source is divided by 16
* @arg @ref RCC_MCO2DIV_32 MCO clock source is divided by 32
* @arg @ref RCC_MCO2DIV_64 MCO clock source is divided by 64
* @arg @ref RCC_MCO2DIV_128 MCO clock source is divided by 128
* @arg @ref RCC_MCO2DIV_256 MCO clock source is divided by 256 (*)
* @arg @ref RCC_MCO2DIV_512 MCO clock source is divided by 512 (*)
* @arg @ref RCC_MCO2DIV_1024 MCO clock source is divided by 1024 (*)
* @note (*) not available on all devices
* @retval None
*/
#define __HAL_RCC_MCO2_CONFIG(__MCOCLKSOURCE__, __MCODIV__) \
MODIFY_REG(RCC->CFGR, (RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE), ((__MCOCLKSOURCE__) | (__MCODIV__)))
/**
* @}
*/
/** @defgroup RCC_Flags_Interrupts_Management Flags Interrupts Management
* @brief macros to manage the specified RCC Flags and interrupts.
* @{
*/
/** @brief Enable RCC interrupt.
* @param __INTERRUPT__ specifies the RCC interrupt sources to be enabled.
* This parameter can be any combination of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48 (*)
* @note (*) peripheral not available on all devices
* @retval None
*/
#define __HAL_RCC_ENABLE_IT(__INTERRUPT__) SET_BIT(RCC->CIER, (__INTERRUPT__))
/** @brief Disable RCC interrupt.
* @param __INTERRUPT__ specifies the RCC interrupt sources to be disabled.
* This parameter can be any combination of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48 (*)
* @note (*) peripheral not available on all devices
* @retval None
*/
#define __HAL_RCC_DISABLE_IT(__INTERRUPT__) CLEAR_BIT(RCC->CIER, (__INTERRUPT__))
/** @brief Clear RCC interrupt pending bits.
* @param __INTERRUPT__ specifies the interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_CSS HSE Clock security system interrupt
* @arg @ref RCC_IT_LSECSS LSE Clock security system interrupt
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48 (*)
* @retval None
*/
#define __HAL_RCC_CLEAR_IT(__INTERRUPT__) (RCC->CICR = (__INTERRUPT__))
/** @brief Check whether the RCC interrupt has occurred or not.
* @param __INTERRUPT__ specifies the RCC interrupt source to check.
* This parameter can be one of the following values:
* @arg @ref RCC_IT_LSIRDY LSI ready interrupt
* @arg @ref RCC_IT_LSERDY LSE ready interrupt
* @arg @ref RCC_IT_HSIRDY HSI ready interrupt
* @arg @ref RCC_IT_HSERDY HSE ready interrupt
* @arg @ref RCC_IT_CSS HSE Clock security system interrupt
* @arg @ref RCC_IT_LSECSS LSE Clock security system interrupt
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48 (*)
* @note (*) peripheral not available on all devices
* @retval The new state of __INTERRUPT__ (TRUE or FALSE).
*/
#define __HAL_RCC_GET_IT(__INTERRUPT__) ((RCC->CIFR & (__INTERRUPT__)) == (__INTERRUPT__))
/** @brief Set RMVF bit to clear the reset flags.
* The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_PWRRST,
* RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST and RCC_FLAG_LPWRRST.
* @retval None
*/
#define __HAL_RCC_CLEAR_RESET_FLAGS() (RCC->CSR2 |= RCC_CSR2_RMVF)
/** @brief Check whether the selected RCC flag is set or not.
* @param __FLAG__ specifies the flag to check.
* This parameter can be one of the following values:
* @arg @ref RCC_FLAG_HSIRDY HSI oscillator clock ready
* @arg @ref RCC_FLAG_HSERDY HSE oscillator clock ready
* @arg @ref RCC_FLAG_LSERDY LSE oscillator clock ready
* @arg @ref RCC_FLAG_LSECSSD Clock security system failure on LSE oscillator detection
* @arg @ref RCC_FLAG_LSIRDY LSI oscillator clock ready
* @arg @ref RCC_IT_HSI48RDY HSI48 ready interrupt for devices with HSI48 (*)
* @arg @ref RCC_FLAG_PWRRST BOR or POR/PDR reset
* @arg @ref RCC_FLAG_OBLRST OBLRST reset
* @arg @ref RCC_FLAG_PINRST Pin reset
* @arg @ref RCC_FLAG_SFTRST Software reset
* @arg @ref RCC_FLAG_IWDGRST Independent Watchdog reset
* @arg @ref RCC_FLAG_WWDGRST Window Watchdog reset
* @arg @ref RCC_FLAG_LPWRRST Low Power reset
* @note (*) peripheral not available on all devices
* @retval The new state of __FLAG__ (TRUE or FALSE).
*/
#define __HAL_RCC_GET_FLAG(__FLAG__) (((((((__FLAG__) >> 5U) == RCC_CR_REG_INDEX) ? RCC->CR : \
((((__FLAG__) >> 5U) == RCC_CSR1_REG_INDEX) ? RCC->CSR1 : \
((((__FLAG__) >> 5U) == RCC_CSR2_REG_INDEX) ? RCC->CSR2 : RCC->CIFR))) & \
(1U << ((__FLAG__) & RCC_FLAG_MASK))) != RESET) \
? 1U : 0U)
/**
* @}
*/
/**
* @}
*/
/* Include RCC HAL Extended module */
#include "stm32c0xx_hal_rcc_ex.h"
/* Exported functions --------------------------------------------------------*/
/** @addtogroup RCC_Exported_Functions
* @{
*/
/** @addtogroup RCC_Exported_Functions_Group1
* @{
*/
/* Initialization and de-initialization functions ******************************/
HAL_StatusTypeDef HAL_RCC_DeInit(void);
HAL_StatusTypeDef HAL_RCC_OscConfig(const RCC_OscInitTypeDef *RCC_OscInitStruct);
HAL_StatusTypeDef HAL_RCC_ClockConfig(const RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency);
/**
* @}
*/
/** @addtogroup RCC_Exported_Functions_Group2
* @{
*/
/* Peripheral Control functions ************************************************/
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv);
void HAL_RCC_EnableCSS(void);
void HAL_RCC_EnableLSECSS(void);
void HAL_RCC_DisableLSECSS(void);
uint32_t HAL_RCC_GetSysClockFreq(void);
uint32_t HAL_RCC_GetHCLKFreq(void);
uint32_t HAL_RCC_GetPCLK1Freq(void);
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct);
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct,
uint32_t *pFLatency);
/* LSE & HSE CSS NMI IRQ handler */
void HAL_RCC_NMI_IRQHandler(void); /* User Callbacks in non blocking mode (IT mode) */
void HAL_RCC_CSSCallback(void);
void HAL_RCC_LSECSSCallback(void);
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* STM32C0xx_HAL_RCC_H */